[go: up one dir, main page]

Search a number
Canada numbers
Canada numbers are those  $n$  such that the sum of the squares of the digits of  $n$  is equal to the sum of the non-trivial divisors of  $n$, i.e.  $\sigma(n)-n-1$.

For example, 581, whose divisors are 1, 7, 83 and 581, is a Canada number because  $5^2+8^2+1^2=7+83$.

The name of these numbers is due to the fact they were defined by some mathematicians from Manitoba University to celebrate the 125th anniversary of Canada.

The Canada numbers are 125, 581, 8549, and 16999.

Canada numbers can also be... (you may click on names or numbers)

aban 125 581 alternating 125 581 8549 amenable 125 581 8549 apocalyptic 8549 16999 arithmetic 125 581 8549 16999 congruent 125 581 8549 16999 cube 125 Curzon 125 581 8549 cyclic 581 8549 16999 deficient 125 581 8549 16999 Duffinian 125 8549 16999 economical 125 581 16999 emirpimes 581 8549 equidigital 581 16999 evil 125 581 8549 Friedman 125 frugal 125 happy 16999 inconsummate 8549 metadrome 125 modest 16999 odious 16999 pernicious 16999 plaindrome 125 16999 power 125 powerful 125 Ruth-Aaron 125 semiprime 581 8549 16999 super-d 581 trimorphic 125 wasteful 8549