Computer Science ›› 2022, Vol. 49 ›› Issue (4): 152-160.doi: 10.11896/jsjkx.210300094
• Database & Big Data & Data Science • Previous Articles Next Articles
SUN Lin1,2, HUANG Miao-miao1,3, XU Jiu-cheng1,2
CLC Number:
[1] KASHEF S,NEZAMABADI-POUR H.A label-specific multi-label feature selection algorithm based on the Pareto dominance concept[J].Pattern Recognition,2019,88:654-667. [2] SUN L,YIN T Y,DING W P,et al.Feature selection with mis-sing labels using multilabel fuzzy neighborhood rough sets and maximum relevance minimum redundancy[J/OL].IEEE Tran-sactions on Fuzzy Systems,2021.https://ieeexplore.ieee.org/abstract/document/9333666. [3] GONZÁLEZ-LÓPEZ J,VENTURA S,CANO A.Distributedselection of continuous features in multilabel classification using mutual information[J].IEEE Transactions on Neural Networks and Learning Systems,2020,31(7):2280-2293. [4] DENGW,GUO Y X,LI Y,et al.Power losses prediction based on feature selection and Stacking integrated learning[J].Power System Protection and Control,2020,28(15):108-115. [5] CHEN C Y,LIN Y J,TANG L,et al.Streaming multi-label feature selection based on neighborhood interaction gain information[J].Journal of Nanjing University (Natural Science),2020,56(1):30-40. [6] LI Y C,YANG Y L,QIU H Q.Label embedding for weak label classification[J].Journal of Nanjing University(Natural Science),2020,56(4):549-560. [7] SUN L,YIN T Y,DING W P,et al.Multilabel feature selection using ML-ReliefF and neighborhood mutual information for multilabel neighborhood decision systems[J].Information Sciences,2020,537:401-424. [8] LIU Y,CHENG L,SUN L.Feature selection method based on K-S test and neighborhood rough set[J].Journal of Henan Normal University (Natural Science Edition),2019,47(2):21-28. [9] XUE Z A,PANG W L,YAO S Q,et al.The prospect theory based intuitionistic fuzzy three-way decisions model[J].Journal of Henan Normal University(Natural Science Edition),2020,48(5):31-36. [10] SUN L,WANG L Y,DING W P,et al.Neighborhood multi-granulation rough sets-based attribute reduction using Lebesgue and entropy measures in incomplete neighborhood decision systems[J/OL].Knowledge-Based Systems.https://www.sciencedirect.com/science/article/pii/S0950705119306240. [11] LIU K,FENG S.An improved artificial bee colony algorithm for enhancing local search ability[J].Journal of Henan Normal University (Natural Science Edition),2021,49(2):15-24. [12] SUN L,ZHANG X Y,QIAN Y H,et al.Joint neighborhood entropy-based gene selection method with Fisher score for tumor classification[J].Applied Intelligence,2019,49(4):1245-1259. [13] LIN Y J,LI Y W,WANG C X,et al.Attribute reduction formulti-label learning with fuzzy rough set[J].Knowledge-Based Systems,2018,152:51-61. [14] SUN L,WANG L Y,QIAN Y H,et al.Feature selection using Lebesgue and entropy measures for incomplete neighborhood decision systems[J/OL].Knowledge-Based Systems.https://www.sciencedirect.com/science/article/pii/S0950705119303818. [15] ZHU P F,XU Q,HU Q H,et al.Multi-label feature selection with missing labels[J].Pattern Recognition,2018,74:488-502. [16] SUN L,WANGL Y,DING W P,et al.Feature selection using fuzzy neighborhood entropy-based uncertainty measures for fuzzy neighborhood multigranulation rough sets[J].IEEE Transactions on Fuzzy Systems,2021,29(1):19-33. [17] HAN S M,ZHENG S Q,HE Y S.Open circuit fault diagnosis for inverters based on a greedy algorithm of a rough set[J].Power System Protection and Control,2020,48(17):122-130. [18] LIU J H,LIN Y J,LI Y W,et al.Online multi-label streaming feature selection based on neighborhood rough set[J].Pattern Recognition,2018,84:273-287. [19] HU Q H,YU D R,LIU J F,et al.Neighborhood rough setbased heterogeneous feature subset selection[J].Information Sciences,2008,178(18):3577-3594. [20] DUAN J,HU Q H,ZHANG L J,et al.Feature selection formulti-label classification based on neighborhood rough sets[J].Journal of Computer Research and Development,2015,52(1):56-65. [21] YU Y,PEDRYCZ W,MIAO D Q.Neighborhood rough setsbased multi-label classification for automatic image annotation[J].International Journal of Approximate Reasoning,2013,54(9):1373-1387. [22] YU Y,PEDRYCZ W,MIAO D Q.Multi-label classification by exploiting label correlations[J].Expert Systems with Applications,2014,41(6):2989-3004. [23] SUN L,YIN T Y,DING W P,et al.Hybrid multilabel feature selection using BPSO and neighborhood rough sets for multilabel neighborhood decision systems[J].IEEE Access,2019,7:175793-175815. [24] WANG C X,LIN Y J,LIU J H.Feature selection for multi-label learning with missing labels[J].Applied Intelligence,2019,49(8):3027-3042. [25] JIANG L,YU G X,GUO M Z,et al.Feature selection withmissing labels based on label compression and local feature correlation[J].Neurocomputing,2020,395:95-106. [26] WANG J J,YANG Y L.Multi-label classification algorithm for weak-label data[J].Computer Engineering and Applications,2020,56(5):65-73. [27] YILMAZ T,YAZICI A,KITSUREGAWA M.RELIEF-MM:Effective modality weighting for multimedia information retrie-val[J].Multimedia Systems,2014,20(4):389-413. [28] SPOLAOR N,CHERMAN E A,MONARD M C,et al.ReliefF for multi-label feature selection[C]//Proceedings of the IEEE Brazilian Conference on Intelligent Systems.2013:6-11. [29] REYES O,MORELL C,VENTURA S.Scalable extensions ofthe ReliefF algorithm for weighting and selecting features on the multi-label learning context[J].Neurocomputing,2015,161:168-182. [30] KONG D G,DING C,HUANG H,et al.Multi-label ReliefF and F-statistic feature selections for image annotation[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition.2012:2352-2359. [31] LIN M L,LIU J H,WANG C X,et al.Multi-label feature selection algorithm based on label weighting[J].Computer Science,2017,44(10):289-295. [32] CHEN S B,ZHANG Y M,DING C H Q,et al.Extended adaptive lasso for multi-class and multi-label feature selection[J].Knowledge-Based Systems,2019,173:28-36. [33] HE Z F,YANG M,GAO Y,et al.Joint multi-label classification and label correlations with missing labels and feature selection[J].Knowledge-Based Systems,2019,163:145-158. [34] CHUNG C H,DAI B R.A framework of the semi-supervisedmulti-label classification with non-uniformly distributed incomplete labels[C]//Proceedings of International Confe-rence on Big Data Analytics and Knowledge Discovery.2016:267-280. [35] SUN Y Y,ZHANG Y,ZHOU Z H.Multi-label learning with weak label[C]//Proceedings of Twenty-Fourth AAAI Confe-rence on Artificial Intelligence.2010:593-598. [36] BRAYTEE A,LIU W,CATCHPOOLE D R,et al.Multi-label feature selection using correlation information[C]//Proceedings of the ACM Conference on Information and Knowledge Management.2017:1649-1656. [37] CAI Z L,ZHU W.Multi-label feature selection via feature manifold learning and sparsity regularization[J].International Journal of Machine Learning and Cybernetics,2018,9(8):1321-1334. [38] CHANG X J,NIE F P,YANG Y,et al.A convex formulation for semi-supervised multi-label feature selection[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2014:1171-1177. |
[1] | LI Bin, WAN Yuan. Unsupervised Multi-view Feature Selection Based on Similarity Matrix Learning and Matrix Alignment [J]. Computer Science, 2022, 49(8): 86-96. |
[2] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[3] | KANG Yan, WANG Hai-ning, TAO Liu, YANG Hai-xiao, YANG Xue-kun, WANG Fei, LI Hao. Hybrid Improved Flower Pollination Algorithm and Gray Wolf Algorithm for Feature Selection [J]. Computer Science, 2022, 49(6A): 125-132. |
[4] | CHU An-qi, DING Zhi-jun. Application of Gray Wolf Optimization Algorithm on Synchronous Processing of Sample Equalization and Feature Selection in Credit Evaluation [J]. Computer Science, 2022, 49(4): 134-139. |
[5] | LI Zong-ran, CHEN XIU-Hong, LU Yun, SHAO Zheng-yi. Robust Joint Sparse Uncorrelated Regression [J]. Computer Science, 2022, 49(2): 191-197. |
[6] | WU Lin, BAI Lan, SUN Meng-wei, GOU Zheng-wei. Algal Bloom Discrimination Method Using SAR Image Based on Feature Optimization Algorithm [J]. Computer Science, 2021, 48(9): 194-199. |
[7] | ZHANG Ye, LI Zhi-hua, WANG Chang-jie. Kernel Density Estimation-based Lightweight IoT Anomaly Traffic Detection Method [J]. Computer Science, 2021, 48(9): 337-344. |
[8] | YANG Lei, JIANG Ai-lian, QIANG Yan. Structure Preserving Unsupervised Feature Selection Based on Autoencoder and Manifold Regularization [J]. Computer Science, 2021, 48(8): 53-59. |
[9] | HOU Chun-ping, ZHAO Chun-yue, WANG Zhi-peng. Video Abnormal Event Detection Algorithm Based on Self-feedback Optimal Subclass Mining [J]. Computer Science, 2021, 48(7): 199-205. |
[10] | HU Yan-mei, YANG Bo, DUO Bin. Logistic Regression with Regularization Based on Network Structure [J]. Computer Science, 2021, 48(7): 281-291. |
[11] | ZHOU Gang, GUO Fu-liang. Research on Ensemble Learning Method Based on Feature Selection for High-dimensional Data [J]. Computer Science, 2021, 48(6A): 250-254. |
[12] | DING Si-fan, WANG Feng, WEI Wei. Relief Feature Selection Algorithm Based on Label Correlation [J]. Computer Science, 2021, 48(4): 91-96. |
[13] | TENG Jun-yuan, GAO Meng, ZHENG Xiao-meng, JIANG Yun-song. Noise Tolerable Feature Selection Method for Software Defect Prediction [J]. Computer Science, 2021, 48(12): 131-139. |
[14] | ZHANG Ya-chuan, LI Hao, SONG Chen-ming, BU Rong-jing, WANG Hai-ning, KANG Yan. Hybrid Artificial Chemical Reaction Optimization with Wolf Colony Algorithm for Feature Selection [J]. Computer Science, 2021, 48(11A): 93-101. |
[15] | DONG Ming-gang, HUANG Yu-yang, JING Chao. K-Nearest Neighbor Classification Training Set Optimization Method Based on Genetic Instance and Feature Selection [J]. Computer Science, 2020, 47(8): 178-184. |
|