[go: up one dir, main page]

计算机科学 ›› 2021, Vol. 48 ›› Issue (7): 324-332.doi: 10.11896/jsjkx.201000181

• 计算机网络 • 上一篇    下一篇

一种自适应于不同场景的智能无线传播模型

高士顺, 赵海涛, 张晓瀛, 魏急波   

  1. 国防科技大学电子科学学院 长沙410073
  • 收稿日期:2020-10-29 修回日期:2021-02-09 出版日期:2021-07-15 发布日期:2021-07-02
  • 通讯作者: 赵海涛(haitaozhao@nudt.edu.cn)
  • 基金资助:
    国家自然科学基金重点项目(61931020)

Self-adaptive Intelligent Wireless Propagation Model to Different Scenarios

GAO Shi-shun, ZHAO Hai-tao, ZHANG Xiao-ying, WEI Ji-bo   

  1. College of Electronic Science,National University of Defense Technology,Changsha 410073,China
  • Received:2020-10-29 Revised:2021-02-09 Online:2021-07-15 Published:2021-07-02
  • About author:GAO Shi-shun,born in 1996,postgra-duate.His main research interests include cognitive radio networks and machine learning.(996672196@qq.com)
    ZHAO Hai-tao,born in 1981,Ph.D,professor,is a senior member of IEEE.His main research interests include cognitive radio networks and self-organized networks.
  • Supported by:
    Key Program of the National Natural Science Foundation of China(61931020).

摘要: 无线传播模型由于其对无线电波路径损耗的精准预测及对通信速率与覆盖范围等指标的估算起重要支撑作用,被广泛应用于民用和军用的通信系统设计。近年来,随着人工智能技术的发展,无线传播模型的发展方向也由传统的经验模型向基于数据驱动的智能无线传播模型发展,该类方法可有效地扩展无线传播模型的适用范围并减小预测误差。然而,由于在不同环境下智能无线传播模型的适用特征可能并不相同,如何针对不同场景最优地为智能无线传播模型设计以及选择输入特征是一个重要的研究问题。立足以上需求,提出了一种自适应智能无线传播模型。首先,该模型借鉴经验模型在不同场景下对频率、距离等特征的不同处理方式,对现有的输入特征集合进行了扩充;然后,基于在建模区域采集的训练数据,该模型利用模拟退火算法来自适应地针对当前建模区域为智能无线传播模型选择最优的输入特征子集,从而避免受到无关特征的影响;最后,基于优化过程所搜索到的最优输入特征子集,该模型利用采集到的全部数据对智能无线传播模型进行重新训练,并将该智能无线传播模型进行部署,以预测该区域的路径损耗。仿真结果表明,在复合地形下的LTE网络数据以及其他典型数据集下,与传统的经验模型以及现有的智能无线传播模型相比,所提模型对各种传播场景均具有适用性,且进一步减小了路径损耗的预测误差。

关键词: 经验模型, 模拟退火算法, 深度学习, 无线传播模型

Abstract: The wireless propagation model,which can accurately predict the path loss of radio waves,plays an important role in the estimation of communication rate,coverage and interference.It plays a fundamental role in the design of communication systems in civil and military fields.With the advance in artificial intelligence,there appears a significant trend to develop intelligent wireless propagation model that replaces the empirical formula with machine learning algorithms to fit the path loss.The intelligent wireless propagation model effectively extends the applicability of the propagation model and reduces the error in predicting path loss.However,because the optimal input features set of the intelligent wireless propagation model may be different in diffe-rent propagation environments,it is important to optimally design and select the input features for different scenarios.Therefore,this paper proposes a self-adaptive intelligent wireless propagation model(SAIWP).Firstly,inspired by the processing methods of empirical model for features in different scenarios,the SAIWP model extends the input features set of the intelligent wireless propagation model.And then,the SAIWP model uses the simulated annealing algorithm to self-adaptively select the optimal input feature subset to reduce the error in the prediction of path loss.Finally,the SAIWP model exploits the optimal input feature subset in the optimization process and all data set to train the intelligent wireless propagation model.Simulation results show that,in the LTE networks and the smart campus,compared with traditional empirical models and intelligent wireless propagation models,the SAIWP model predict accurately in various terrains and distances,and effectively reduces the error in the prediction of path loss.

Key words: Deep learning, Empirical model, Simulated annealing algorithm, Wireless propagation model

中图分类号: 

  • TN92
[1]WANG Y.Impact of Path Loss Exponent on Interference and Carrier Sensing Performance Metrics of 802.11 WLANs[J].Computer Science,2017,44(7):84-88.
[2]SARKAR T K,JI Z,KIM K,et al.A survey of various propagation models for mobile communication[J].IEEE Antennas and Propagation Magazine,2003,45(3):51-82.
[3]BRIEN W M,KENNY E M,CULLEN P J,et al.An efficient implementation of a three-dimensional microcell propagation tool for indoor and outdoor urban environments[J].IEEE Transactions on Vehicular Technology,2000,49(2):622-630.
[4]GORCE J M,JAFFRES-RUNSER K,DE LA ROCHE G,et al.Deterministic approach for fast simulations of indoor radio wave propagation[J].IEEE Transactions on Antennas and Propagation,2007,55(3):938-948.
[5]HATA M.Empirical formula for propagation loss in land mobile radio services[J].IEEE transactions on Vehicular Technology,1980,29(3):317-325.
[6]ALDOSSARI S,CHEN K.Predicting the Path Loss of Wireless Channel Models Using Machine Learning Techniques in MmWave Urban Communications[C]//2019 22nd International Symposium on Wireless Personal Multimedia Communications (WPMC).2019:1-6.
[7]GOUDOS S K,ATHANASIADOU G,TSOULOS G V,et al.Modelling Ray Tracing Propagation Data Using Different Machine Learning Algorithms[C]//2020 14th European Confe-rence on Antennas and Propagation (EuCAP).2020:1-4.
[8]WEN J,ZHANG Y,YANG G,et al.Path Loss Prediction Based on Machine Learning Methods for Aircraft Cabin Environments[J].IEEE Access,2019,7:159251-159261.
[9]POPOOLA S I.Determination of neural network parameters for path loss prediction in very high frequency wireless channel[J].IEEE Access,2019,7:150462-150483.
[10]SOTIROUDIS S P,GOUDOS S K,GOTSIS K A,et al.Application of a composite differential evolution algorithm in optimal neural network design for propagation path-loss prediction in mobile communication systems[J].IEEE Antennas and Wireless Propagation Letters,2013,12:364-367.
[11]HU W L.Wireless propagation model calibration and coverage area prediction for LTE networks[D].Wuhan:Huazhong University of Science and Technology,2018.
[12]POPOOLA S,FARUK N,OLOYEDE A,et al.Characterization of Path Loss in the VHF Band using Neural Network Modeling Technique[C]//2019 19th International Conference on Computational Science and Its Applications(ICCSA).2019:166-171.
[13]WANG Y,HUANG C L Z,LIANG M Y,et al.A New Method for Radio Wave Propagation Prediction Based on BP-Neural Network and Path Loss Model[C]//2020 12th InternationalConference on Knowledge and Smart Technology (KST).2020:41-46.
[14]FARUK N.Path Loss Predictions in the VHF and UHF Bands Within Urban Environments:Experimental Investigation of Empirical,Heuristics and Geospatial Models[J].IEEE Access,2019,7:77293-77307.
[15]AYADI M,ZINEB A B,TABBANE S,et al.A UHF path loss model using learning machine for heterogeneous networks[J].IEEE Transactions on Antennas and Propagation,2017,65(7):3675-3683.
[16]OROZA C A,ZHANG Z,WATTEYNE T,et al.A machine-learning-based connectivity model for complex terrain large-scale low-power wireless deployments[J].IEEE Transactions on Cognitive Communications and Networking,2017,3(4):576-584.
[17]CHEN B,HONG J R,WANG Y D,et al.Optimal feature subset selection problem[J].Journal of Computer Science,1997(2):133-138.
[18]GUYON I,ELISSEEF F,ANDR É,et al.An Introduction toVariable and Feature Selection[J].Journal of Machine Learning Research,2003,3(6):1157-1182.
[19]ZHAO Y,LIU W Y.Feature selection method based on genetic algorithm[J].Computer Engineering and Applications,2004,40(15):52-54.
[20]ZHANG Y B,YOU L J,CHEN J X.Feature selection of multi-mark data based on simulated annealing[J].Computer Enginee-ring and Design,2011(7):286-292.
[21]ZHANG W H,LIU S H,HOU H F.A tabu search algorithm for feature selection[J].Computer Applications and Software,2010(5):131-133.
[22]LI Z Q,DU J Q,NIE B,et al.A review of feature selection methods [J].Computer Engineering and Applications,2019,55(24):10-19.
[23]POPOOLA S I,ATAYERO A A,ARAUSI O D,et al.Path loss dataset for modeling radio wave propagation in smart campus environment[J].Data in Brief,2018,17:1062.
[1] 饶志双, 贾真, 张凡, 李天瑞.
基于Key-Value关联记忆网络的知识图谱问答方法
Key-Value Relational Memory Networks for Question Answering over Knowledge Graph
计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277
[2] 汤凌韬, 王迪, 张鲁飞, 刘盛云.
基于安全多方计算和差分隐私的联邦学习方案
Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy
计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108
[3] 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺.
时序知识图谱表示学习
Temporal Knowledge Graph Representation Learning
计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204
[4] 王剑, 彭雨琦, 赵宇斐, 杨健.
基于深度学习的社交网络舆情信息抽取方法综述
Survey of Social Network Public Opinion Information Extraction Based on Deep Learning
计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099
[5] 郝志荣, 陈龙, 黄嘉成.
面向文本分类的类别区分式通用对抗攻击方法
Class Discriminative Universal Adversarial Attack for Text Classification
计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077
[6] 姜梦函, 李邵梅, 郑洪浩, 张建朋.
基于改进位置编码的谣言检测模型
Rumor Detection Model Based on Improved Position Embedding
计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046
[7] 孙奇, 吉根林, 张杰.
基于非局部注意力生成对抗网络的视频异常事件检测方法
Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection
计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061
[8] 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木.
中文预训练模型研究进展
Advances in Chinese Pre-training Models
计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018
[9] 周慧, 施皓晨, 屠要峰, 黄圣君.
基于主动采样的深度鲁棒神经网络学习
Robust Deep Neural Network Learning Based on Active Sampling
计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044
[10] 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫.
小样本雷达辐射源识别的深度学习方法综述
Survey of Deep Learning for Radar Emitter Identification Based on Small Sample
计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138
[11] 胡艳羽, 赵龙, 董祥军.
一种用于癌症分类的两阶段深度特征选择提取算法
Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification
计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092
[12] 程成, 降爱莲.
基于多路径特征提取的实时语义分割方法
Real-time Semantic Segmentation Method Based on Multi-path Feature Extraction
计算机科学, 2022, 49(7): 120-126. https://doi.org/10.11896/jsjkx.210500157
[13] 祝文韬, 兰先超, 罗唤霖, 岳彬, 汪洋.
改进Faster R-CNN的光学遥感飞机目标检测
Remote Sensing Aircraft Target Detection Based on Improved Faster R-CNN
计算机科学, 2022, 49(6A): 378-383. https://doi.org/10.11896/jsjkx.210300121
[14] 王建明, 陈响育, 杨自忠, 史晨阳, 张宇航, 钱正坤.
不同数据增强方法对模型识别精度的影响
Influence of Different Data Augmentation Methods on Model Recognition Accuracy
计算机科学, 2022, 49(6A): 418-423. https://doi.org/10.11896/jsjkx.210700210
[15] 毛典辉, 黄晖煜, 赵爽.
符合监管合规性的自动合成新闻检测方法研究
Study on Automatic Synthetic News Detection Method Complying with Regulatory Compliance
计算机科学, 2022, 49(6A): 523-530. https://doi.org/10.11896/jsjkx.210300083
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!