计算机科学 ›› 2022, Vol. 49 ›› Issue (7): 120-126.doi: 10.11896/jsjkx.210500157
程成, 降爱莲
CHENG Cheng, JIANG Ai-lian
摘要: 深度学习在图像语义分割领域的应用极大地提升了分割精确度,但由于深度学习网络在速度、内存等方面的限制,其并不能直接应用于嵌入式设备进行实时分割。针对语义分割模型存在的的网络结构复杂和计算开销巨大的问题,提出了结合边缘检测算法的多路径特征提取的实时语义分割算法。模型通过Sobel算子、Scharr算子和Laplacian算子对图像的轮廓信息进行提取。算法设计了空间路径提取图像的空间位置信息、语义路径提取图像高级语义信息,以及通过边缘检测路径提取图像中具有代表性的纹理特征,并采用Ghost轻量化模块来减少模型参数量,提高算法的分割速度。在480像素×360像素的CamVid数据集上的实验结果表明,在3种边缘检测算子上,模型的分割准确率均能得到有效提升,尤其是在加入3×3大小的Sobel算子下算法的性能提升最为明显,在CamVid测试集图像处理速度为349 frames/s的基础上,分割精度达到了42.9%。所提算法在分割精度和分割速度上均取得了较好的效果,在实时性和准确性之间达到了很好的平衡。
中图分类号:
[1]CHEN Q S,TAO Y,SHEN F H,et al.Semantic segmentation of images based on contextual structure[J].Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2020,32(2):287-294. [2]CHAO Y,XIAO N F.Research on Robotic Grasping Methods Based on Semantic Segmentation and Brain Computer Interface[J].Journal of Chongqing University of Technology(Natural Science),2020,34(3):128 -136,151. [3]LECUN Y,BOTTOU L.Gradient-based learning applied to docu-ment recognition[J].Proceedings of the IEEE,1998,86(11):2278-2324. [4]LONG J,SHEKHAMER E,DARRELL T.Fully Convolutional Networks for Semantic Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(4):640-651. [5]RONNEBERGER O,FISCHER P,BROX T,et al.U-net:Con-volutional networks for biomedical image segmentation[J].Medical Image Computing and Computer Assisted Intervention,2015,28(4):234-241. [6]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Hawaii:IEEE Press,2017:2881-2890. [7]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.DeepLab:Semantic Image Segmentation with Deep Convolutional Nets,Atrous Convolution,and Fully Connected CRFs[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2016,40(4):834-848. [8]PASZKE A,CHAURASIA A,KIM A.ENet:a deep neural network architecture for real-time semantic segmentation[J].ar-Xiv:1606.02147,2016. [9]YU C,WANG J,PENG C,et al.Bisenet:Bilateral segmentation network for real-time semantic segmentation[C]//Proceedings of the European Conference on Computer Vision.Munich,Germany,2018:325-341. [10]LI H,XIONG P,FAN H,et al.Dfanet:Deep feature aggregation for real-time semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Seoul:IEEE Press,2019:9522-9531. [11]HAN K,WANG Y,TIAN Q,et al.GhostNet:More Features From Cheap Operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle:IEEE Press,2020:1577-1586. [12]LIN G S,MILAN A,SHEN C H,et al.Refinenet:multi-path refinement networks for high-resolution semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Los Alamitos:IEEE Computer Society Press,2017:5168-5177. [13]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,NV,2016:2818-2826. [14]CHOLLET F.Xception:deep learning with depth wise separable convolutions[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:1800-1807. [15]SANDLER M,HOWARD A,ZHU M,et al.MobileNetV2:inverted residuals and linear bottlenecks.conference [C]//IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:4510-4520. [16]ZHUANG L,LI J,SHEN Z,et al.Learning Efficient Convolutional Networks through Network Slimming [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:2755-2763. [17]ZHAO H,QI X,SHEN X,et al.Icnet for real-time semantic segmentation on high-resolution images[C]//Proceedings of the European Conference on Computer Vision(ECCV).Munich,Germany,2018:405-420. [18]MA N,ZHANG X,ZHENG H T,et al.Shufflenet v2:Practical guidelines for efficient CNN architecture design[C]//Procee-dings of the European Conference on Computer Vision.Munich,Germany,2018:116-131. [19]WANG Y,ZHOU Q,LIU J,et al.LEDNet:A Lightweight Encoder-Decoder Network for Real-Time Semantic Segmentation[C]//2019 IEEE International Conference on Image Processing(ICIP).Taipei:IEEE Press,2019:126-172. [20]BADRINARAYANAN V,KENDALL A,CIPOLLA R.Segnet:A deep convolutional encoder-decoder architecture for image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495. |
[1] | 徐涌鑫, 赵俊峰, 王亚沙, 谢冰, 杨恺. 时序知识图谱表示学习 Temporal Knowledge Graph Representation Learning 计算机科学, 2022, 49(9): 162-171. https://doi.org/10.11896/jsjkx.220500204 |
[2] | 饶志双, 贾真, 张凡, 李天瑞. 基于Key-Value关联记忆网络的知识图谱问答方法 Key-Value Relational Memory Networks for Question Answering over Knowledge Graph 计算机科学, 2022, 49(9): 202-207. https://doi.org/10.11896/jsjkx.220300277 |
[3] | 汤凌韬, 王迪, 张鲁飞, 刘盛云. 基于安全多方计算和差分隐私的联邦学习方案 Federated Learning Scheme Based on Secure Multi-party Computation and Differential Privacy 计算机科学, 2022, 49(9): 297-305. https://doi.org/10.11896/jsjkx.210800108 |
[4] | 王剑, 彭雨琦, 赵宇斐, 杨健. 基于深度学习的社交网络舆情信息抽取方法综述 Survey of Social Network Public Opinion Information Extraction Based on Deep Learning 计算机科学, 2022, 49(8): 279-293. https://doi.org/10.11896/jsjkx.220300099 |
[5] | 郝志荣, 陈龙, 黄嘉成. 面向文本分类的类别区分式通用对抗攻击方法 Class Discriminative Universal Adversarial Attack for Text Classification 计算机科学, 2022, 49(8): 323-329. https://doi.org/10.11896/jsjkx.220200077 |
[6] | 姜梦函, 李邵梅, 郑洪浩, 张建朋. 基于改进位置编码的谣言检测模型 Rumor Detection Model Based on Improved Position Embedding 计算机科学, 2022, 49(8): 330-335. https://doi.org/10.11896/jsjkx.210600046 |
[7] | 孙奇, 吉根林, 张杰. 基于非局部注意力生成对抗网络的视频异常事件检测方法 Non-local Attention Based Generative Adversarial Network for Video Abnormal Event Detection 计算机科学, 2022, 49(8): 172-177. https://doi.org/10.11896/jsjkx.210600061 |
[8] | 侯钰涛, 阿布都克力木·阿布力孜, 哈里旦木·阿布都克里木. 中文预训练模型研究进展 Advances in Chinese Pre-training Models 计算机科学, 2022, 49(7): 148-163. https://doi.org/10.11896/jsjkx.211200018 |
[9] | 周慧, 施皓晨, 屠要峰, 黄圣君. 基于主动采样的深度鲁棒神经网络学习 Robust Deep Neural Network Learning Based on Active Sampling 计算机科学, 2022, 49(7): 164-169. https://doi.org/10.11896/jsjkx.210600044 |
[10] | 苏丹宁, 曹桂涛, 王燕楠, 王宏, 任赫. 小样本雷达辐射源识别的深度学习方法综述 Survey of Deep Learning for Radar Emitter Identification Based on Small Sample 计算机科学, 2022, 49(7): 226-235. https://doi.org/10.11896/jsjkx.210600138 |
[11] | 胡艳羽, 赵龙, 董祥军. 一种用于癌症分类的两阶段深度特征选择提取算法 Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification 计算机科学, 2022, 49(7): 73-78. https://doi.org/10.11896/jsjkx.210500092 |
[12] | 张颖涛, 张杰, 张睿, 张文强. 全局信息引导的真实图像风格迁移 Photorealistic Style Transfer Guided by Global Information 计算机科学, 2022, 49(7): 100-105. https://doi.org/10.11896/jsjkx.210600036 |
[13] | 郁舒昊, 周辉, 叶春杨, 王太正. SDFA:基于多特征融合的船舶轨迹聚类方法研究 SDFA:Study on Ship Trajectory Clustering Method Based on Multi-feature Fusion 计算机科学, 2022, 49(6A): 256-260. https://doi.org/10.11896/jsjkx.211100253 |
[14] | 王君锋, 刘凡, 杨赛, 吕坦悦, 陈峙宇, 许峰. 基于多源迁移学习的大坝裂缝检测 Dam Crack Detection Based on Multi-source Transfer Learning 计算机科学, 2022, 49(6A): 319-324. https://doi.org/10.11896/jsjkx.210500124 |
[15] | 楚玉春, 龚航, 王学芳, 刘培顺. 基于YOLOv4的目标检测知识蒸馏算法研究 Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4 计算机科学, 2022, 49(6A): 337-344. https://doi.org/10.11896/jsjkx.210600204 |
|