[go: up one dir, main page]

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2021/2022

Алгебра

Лучший по критерию «Новизна полученных знаний»
Статус: Курс обязательный (Программная инженерия)
Направление: 09.03.04. Программная инженерия
Когда читается: 1-й курс, 1-4 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 11
Контактные часы: 140

Программа дисциплины

Аннотация

Настоящая дисциплина является обязательной и относится к базовым дисциплинам профессионального цикла. Для освоения учебной дисциплины не требуются знания и компетенции, выходящие за пределы требований к поступающим на программу бакалавриата. Изучение данной дисциплины базируется на школьном курсе алгебры и начал анализа. Для освоения учебной дисциплины, студенты должны владеть следующими знаниями и компетенциями: знание элементарной алгебры, знание простейших понятий теории множеств. Основные положения дисциплины должны быть использованы в дальнейшем при изучении следующих дисциплин: математический анализ, анализ данных, дискретная математика, теория вероятностей и математическая статистика, статистические и эмпирические методы компьютинга, алгоритмы и структуры данных.
Цель освоения дисциплины

Цель освоения дисциплины

  • Развитие математического кругозора и алгебраического мышления студентов.
  • Обучение студентов важнейшим теоретическим положениям линейной алгебры, началам абстрактной алгебры, матричным методам.
  • Выработка у студентов навыков решения конкретных задач, требующих исследования систем линейных уравнений, применения матричных вычислений, многомерной геометрии, линейных операторов.
Планируемые результаты обучения

Планируемые результаты обучения

  • Умение вычислять определители матриц (в том числе, используя определение), находить ранги матриц.
  • Умение выяснять является ли данный алгебраический объект линейным пространством. Уметь находить матрицы линейных операторов, выяснять когда эти матрицы имеют простейший вид и находить его.
  • Умение исследовать строение групп. Умение применять основы шифрования. Умение выяснять, является ли данной множество кольцом, полем, алгеброй и уметь устанавливать изоморфизмы между ними.
  • Умение классифицировать кривые и поверхности второго порядка и приводить их к каноническому виду с помощью ортогонального преобразования и сдвига.
  • Умение находить расстояния между вектором и линейным многообразием в евклидовом пространстве. Умение находить основные матричные разложения.
  • Умение находить фундаментальную систему решений однородной СЛАУ, находить общее решение неоднородной СЛАУ, исследовать СЛАУ на совместность.
  • Умение приводить билинейные и квадратичные формы к каноническому виду, исследовать их на положительную и отрицательную определенность.
  • Умение применять основные векторные и матричные операции для решения задач аналитической геометрии.
  • Умение работать с комплексными числами (в частности, умение извлекать комплексные корни). Умение выяснять, является ли данное множество с данной бинарной операцией полугруппой, моноидом, группой.
  • Умение решать системы линейных уравнений при помощи алгоритма Гаусса, выполнять операции над матрицами.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Системы линейных уравнений, матрицы
  • Определители
  • Системы линейных уравнений, матрицы (продолжение)
  • Векторная алгебра. Элементы аналитической геометрии
  • Комплексные числа
  • Элементы общей алгебры
  • Линейные пространства. Линейные отображения и операторы.
  • Билинейные и квадратичные функции, евклидовы пространства
  • Кривые и поверхности второго порядка
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа 1мод.
  • неблокирующий Домашнее задание 1-2 мод.
  • неблокирующий Экз. раб. -1
    Экзамен проводится в письменной форме оффлайн или с использованием синхронного прокторинга. В последнем случае к экзамену необходимо подключиться за 10 минут. На платформе прокторинга доступно тестирование системы. Компьютер студента должен удовлетворять минимальным техническим требованиям, описанным на платформе. Для участия в экзамене студент обязан: заранее зайти на платформу прокторинга, провести тест системы, включить камеру и микрофон, подтвердить личность. Во время экзамена студентам запрещено: общаться (в социальных сетях, с людьми в комнате), списывать. Кратковременным нарушением связи во время экзамена считается прерывание связи до 5 минут. Долговременным нарушением связи во время экзамена считается прерывание связи 5 минут и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи.
  • неблокирующий Коллоквиум - 4 мод.
  • неблокирующий Экзамен итоговый
  • неблокирующий сем. - 1
  • неблокирующий Контрольная работа 3 мод.
  • неблокирующий сем. - 2
  • неблокирующий Домашнее задание 3-4 мод.
  • неблокирующий Экз. раб. -2
    Экзамен проводится в письменной форме оффлайн или с использованием синхронного прокторинга (для оформивших переход на онлайн обучение). Во втором случае действовать нужно следующим образом. К экзамену необходимо подключиться за 10 минут. На платформе прокторинга доступно тестирование системы. Компьютер студента должен удовлетворять минимальным техническим требованиям, описанным на платформе. Для участия в экзамене студент обязан: заранее зайти на платформу прокторинга, провести тест системы, включить камеру и микрофон, подтвердить личность. Во время экзамена студентам запрещено: общаться (в социальных сетях, с людьми в комнате), списывать. Кратковременным нарушением связи во время экзамена считается прерывание связи до 5 минут. Долговременным нарушением связи во время экзамена считается прерывание связи 5 минут и более. При долговременном нарушении связи студент не может продолжить участие в экзамене. Процедура пересдачи аналогична процедуре сдачи.
Промежуточная аттестация

Промежуточная аттестация

  • 2021/2022 учебный год 2 модуль
    0.2 * Контрольная работа 1мод. + 0.14 * Домашнее задание 1-2 мод. + 0.6 * Экз. раб. -1 + 0.06 * сем. - 1
  • 2021/2022 учебный год 4 модуль
    Результирующая оценка за курс (в 4-м модуле): О2=0,245∙О_(Кр-3мод)+0,245∙О_(Коллоквиум-4мод)+0,11∙О_(Сем-2)+0,1∙О_(Дз-3 и 4 мод)+0,3∙О_(Экз.раб.-2). Здесь О_(Сем-2) – оценка от 0 до 10 баллов, учитывающая посещение семинаров, активность на семинарах, в том числе решение задач у доски, и выполнение текущих домашних работ в 3-м и 4-м модулях. Оценки за индивидуальные домашние задания в 1 и 2 модулях, а также в 3 и 4 модулях вычисляются как среднее арифметическое О_(Дз-мод1(3)) и О_(Дз-мод2(4)). В конце четвертого модуля проводится письменный экзамен, за который выставляется оценка О_(Экз.раб.-2). О_(Кр-3мод) это оценка за контрольную работу в 3-м модуле, а О_(Коллоквиум-4мод) это оценка за коллоквиум в 4 модуле.
Список литературы

Список литературы

Рекомендуемая основная литература

  • Алгебра и аналитическая геометрия. Т.2, Ч.1: Теоремы и задачи, Ким, Г. Д., 2003
  • Аналитическая геометрия и линейная алгебра. Ч.1: ., Умнов, А. Е., 2006
  • Введение в алгебру. Ч.1: Основы алгебры, Кострикин, А. И., 2009
  • Введение в алгебру. Ч.2: Линейная алгебра, Кострикин, А. И., 2009
  • Введение в алгебру. Ч.3: Основные структуры алгебры, Кострикин, А. И., 2009
  • Курс алгебры, Винберг, Э. Б., 2002
  • Курс аналитической геометрии и линейной алгебры : учебник для вузов, Беклемишев, Д. В., 2009
  • Линейная алгебра : учебник и практикум для бакалавров, Бурмистрова, Е. Б., 2014

Рекомендуемая дополнительная литература

  • Тыртышников, Е. Е. Матричный анализ и линейная алгебра [Электронный ресурс] / Е. Е. Тыртышников. - М.: ФИЗМАТЛИТ, 2007. - 480 с. - ISBN 978-5-9221-0778-5.

Авторы

  • Хрыстик Михаил Андреевич
  • Чернышев Всеволод Леонидович
  • Максаев Артем Максимович
  • Зайцева Юлия Ивановна
  • Медведь Никита Юрьевич