Learning Conditional Preference Networks: an Approach Based on the Minimum Description Length Principle - Université Toulouse III - Paul Sabatier - Toulouse INP
[go: up one dir, main page]

Communication Dans Un Congrès Année : 2024
Learning Conditional Preference Networks: an Approach Based on the Minimum Description Length Principle
1 CentraleSupélec [campus de Rennes] (Campus de Rennes, Av. de la Boulaie, 35510 Cesson-Sévigné - France)
"> CentraleSupélec [campus de Rennes]
2 CIDRE - Confidentialité, Intégrité, Disponibilité et Répartition (Campus de Beaulieu 35042 Rennes cedex - France)
"> CIDRE - Confidentialité, Intégrité, Disponibilité et Répartition
3 IRIT-ADRIA - Argumentation, Décision, Raisonnement, Incertitude et Apprentissage (Institut de recherche en informatique de Toulouse - IRIT 118 Route de Narbonne 31062 Toulouse Cedex 9 - France)
"> IRIT-ADRIA - Argumentation, Décision, Raisonnement, Incertitude et Apprentissage
4 UT3 - Université Toulouse III - Paul Sabatier (118 route de Narbonne - 31062 Toulouse - France)
"> UT3 - Université Toulouse III - Paul Sabatier

Résumé

CP-nets are a very expressive graphical model for representing preferences over combinatorial spaces. They are particularly well suited for settings where an important task is to compute the optimal completion of some partially specified alternative; this is, for instance, the case of interactive configurators, where preferences can be used at every step of the interaction to guide the decision maker towards a satisfactory configuration. Learning CP-nets is challenging when the input data has the form of pairwise comparisons between alternatives. Furthermore, this type of preference data is not commonly stored: it can be elicited but this puts an additional burden on the decision maker. In this article, we propose a new method for learning CP-nets from sales history, a kind of data readily available in many e-commerce applications. The approach is based on the minimum description length (MDL) principle. We show some theoretical properties of this learning task, namely its sample complexity and its NP-completeness, and we experiment with this learning algorithm in a recommendation setting with real sales history from a car maker.
Fichier principal
Vignette du fichier
learn-CPnets-with-MDL_2024-05-10-12h05-avec-bbl+annexe.pdf (460.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04572196 , version 1 (28-10-2024)

Licence

Identifiants

Citer

Pierre-François Gimenez, Jérôme Mengin. Learning Conditional Preference Networks: an Approach Based on the Minimum Description Length Principle. IJCAI 2024 - 33rd International Joint Conference on Artificial Intelligence, Aug 2024, Jeju, South Korea. pp.3395-3403, ⟨10.24963/ijcai.2024/376⟩. ⟨hal-04572196⟩
75 Consultations
24 Téléchargements

Altmetric

Partager

More