Sayısal entegrasyon
Analizde, sayısal entegrasyon, belirli bir integralin sayısal değerini hesaplamak için geniş bir algoritma ailesini içerir ve bunun uzantısı olarak bazen diferansiyel denklemlerin sayısal çözümünü tanımlamak için de kullanılır.
Sayısal kareleme terimi (genellikle kareleme olarak kısaltılır), özellikle tek boyutlu integrallere uygulandığı şekliyle sayısal entegrasyon ile aşağı yukarı eşanlamlıdır. Bazı yazarlar birden fazla boyut üzerinden sayısal entegrasyona küp şeklinde atıfta bulunur. Bazıları da daha yüksek boyutlu entegrasyonu dahil etmek amacıyla karelemeyi alır.
Sayısal entegrasyondaki temel problem belirli bir integralin yaklaşık çözümünü hesaplamaktır.
Eğer f(x), az sayıda boyutta tümleşik düzgün bir fonksiyonsa ve integral alanı sınırlıysa, integrali istenen hassasiyete yaklaştırmak için birçok yöntem vardır.
Kaynakça
[değiştir | kaynağı değiştir]- Philip J. Davis ve Philip Rabinowitz, Sayısal İntegrasyon Yöntemleri .
- George E. Forsythe, Michael A. Malcolm ve Cleve B. Moler, Matematiksel Hesaplamalar için Bilgisayar Yöntemleri . Englewood Cliffs, NJ: Prentice-Hall, 1977. (Bölüm 5'e bakın. )
- Josef Stoer ve Roland Bulirsch, Nümerik Analize Giriş . New York: Springer-Verlag, 1980. (Bölüm 3'e bakın. )
- Boyer, CB, Matematik Tarihi, 2. baskı. rev. Uta C. Merzbach tarafından, New York: Wiley, 19890-471-09763-2 (1991 pbk ed.0-471-54397-7ISBN 0-471-54397-7 ).
- Eves, Howard, Matematik Tarihine Giriş, Saunders, 1990,0-03-029558-0,
Dış bağlantılar
[değiştir | kaynağı değiştir]- Entegrasyon: Bütünsel Sayısal Yöntemler Enstitüsünde Arka Plan, Simülasyonlar vb. 1 Eylül 2006 tarihinde Wayback Machine sitesinde arşivlendi.
- Wolfram Mathworld'den Lobatto Quadrature 5 Nisan 2023 tarihinde Wayback Machine sitesinde arşivlendi.
- Encyclopedia of Mathematics'ten Lobatto kareleme formülü 21 Şubat 2020 tarihinde Wayback Machine sitesinde arşivlendi.
- Ücretsiz Tracker Bileşen Kitaplığı içinde birçok kareleme ve küpleme formülünün uygulamaları 25 Ağustos 2020 tarihinde Wayback Machine sitesinde arşivlendi. .
- SageMath Çevrimiçi Entegratör 26 Mayıs 2023 tarihinde Wayback Machine sitesinde arşivlendi.