Computer Science ›› 2019, Vol. 46 ›› Issue (1): 285-290.doi: 10.11896/j.issn.1002-137X.2019.01.044
Special Issue: Medical Imaging
• Graphics ,Image & Pattern Recognition • Previous Articles Next Articles
LIU Ping-ping1, ZHANG Wen-hua1, LU Zhen-tai1, CHEN Tao2, LI Guo-xin2
CLC Number:
[1]MIETTINEN M,SARLOMO-RIKALA M,LASOTA J.Gastrointestinal stromal tumors:recent advances in understanding of their biology[J].Human Pathology,1999,30(10):1213-1220.<br /> [2]LEVY A D,REMOTTI H E,THOMPSON W M,et al.Gastrointestinal stromal tumors:radiologic features with pathologic correlation[J].Radiographics,2003,23(2):283-304.<br /> [3]WARNER N E.Ackerman’s Surgical Pathology[J].Journal of the American Medical Association,1997,277(4):345-345.<br /> [4]DEMETRI G D,BENJAMIN R,BLANKE C D,et al.NCCN Task Force report:optimal management of patients with gastrointestinal stromal tumor (GIST)-expansion and update of NCCN clinical practice guidelines[J].Journal of the National Comprehensive Cancer Network,2004,2(1):1-29.<br /> [5]LONGO D L.Tumor heterogeneity and personalized medicine[J].New England Journal of Medicine,2012,366(10):956-958.<br /> [6]LAMBIN P,RIOSVELAZQUEZ E,LEIJENAAR R,et al.Radiomics:Extracting more information from medical images using advanced feature analysis[J].European Journal of Cancer,2012,48(4):441-446.<br /> [7]GILLIES R J,KINAHAN P E,HRICAK H.Radiomics:Images Are More than Pictures,They Are Data[J].Radiology,2016,278(2):563-577.<br /> [8]KUMAR V,GU Y,BASU S,et al.Radiomics:the process and the challenges[J].Magnetic Resonance Imaging,2012,30(9):1234-1248.<br /> [9]GUO W,LI H,ZHU Y,et al.Prediction of clinical phenotypes in invasive breast carcinomas from the integration of radiomics and genomics data[J].Journal of Medical Imaging,2015,2(4):1-12.<br /> [10]VALLIÈRES M,FREEMAN C R,SKAMENE S R,et al.A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities[J].Physics in Medicine & Biology,2015,60(14):5471-5496.<br /> [11]HUANG Y Q,LIANG C H,HE L,et al.Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J].Science Foundation in China,2016,34(4):2157-2164.<br /> [12]JOENSUU H.Risk stratification of patients diagnosed with gastrointestinal stromal tumor[J].Human Pathology,2008,39(10):1411-1419.<br /> [13]HARALICK R M,SHANMUGAM K,DINSTEIN I H.Textural Features for Image Classification[J].IEEE Transactions on Systems Man & Cybernetics,1973,smc-3(6):610-621.<br /> [14]BOCCHINO C,CARABELLESE A,CARUSO T,et al.Use of gray value distribution of run lengths for texture analysis[J].Pattern Recognition Letters,1990,11(6):415-419.<br /> [15]DASARATHY B V,HOLDER E B.Image characterizations based on joint gray level-run length distributions[J].Pattern Recognition Letters,1991,12(8):497-502.<br /> [16]THIBAULT G,FERTIL B,NAVARRO C,et al.Texture Indexes and Gray Level Size Zone Matrix Application to Cell Nuclei Classification[C]//Pattern Recognition and Information Processing (PRIP).2009:140-145.<br /> [17]AMADASUN M,KING R.Textural features corresponding to textural properties[J].IEEE Transactions on Systems Man & Cybernetics,1989,19(5):1264-1274.<br /> [18]DOUGHERTY E R,HUA J,SIMA C.Performance of feature selection methods[J].Current Genomics,2009,10(6):365-374.<br /> [19]KIRA K,RENDELL L A.The feature selection problem:traditional methods and a new algorithm[C]//Tenth National Conference on Artificial Intelligence.California:AAAI Press,1992:129-134.<br /> [20]ROBNIK,IKONJA M,KONONENKO I.Theoretical and Empirical Analysis of ReliefF and RReliefF[J].Machine Learning,2003,53(1-2):23-69.<br /> [21]VAPNIK V N.The nature of statistical learning theory[M].Germany:Springer,2000:988-999.<br /> [22]SCHÖLKOPF B,TSUDA K,VERT J.Kernel methods in computational biology[J].Bussei Kenkyu,2004,81(97):35-90.<br /> [23]CHANG Y W,HSIEH C J,CHANG K W,et al.Training and Testing Low-degree Polynomial Data Mappings via Linear SVM[J].Journal of Machine Learning Research,2010,11(11):1471-1490.<br /> [24]SWETS J A.Signal detection theory and ROC analysis in psychology and diagnostics:Collected papers[M].England:Lawrence Erlbaum Associates,1996:840-841.<br /> [25]PERES D J,IUPPA C,CAVALLARO L,et al.Significant wave height record extension by neural networks and reanalysis wind data[J].Ocean Modelling,2015,94(5):128-140.<br /> [26]ALTMAN D G,BLAND J M.Diagnostic Tests 1:Sensitivity and Specificity[J].BMJ British Medical Journal,1994,308(6943):1552.<br /> [27]METZ C E.Basic principles of ROC analysis[J].Seminars in Nuclear Medicine,1978,8(4):283-298.<br /> [28]ZAFFALON M,HUTTER M.Robust Feature Selection by Mutual Information Distributions[J].Computer Science,2014:577-584.<br /> [29]ROFFO G,MELZI S.Feature Selection via Eigenvector Centrality[C]//New Frontiers in Mining Complex Patterns in Conjunction with ECML/PKDD.2016.<br /> [30]GU Q,LI Z,HAN J.Generalized Fisher score for feature selection[C]//Twenty-Seventh Conference on Uncertainty in Artificial Intelligence.2011:266-273.<br /> [31]GUYON I,WESTON J,BARNHILL S,et al.Gene Selection for Cancer Classification using Support Vector Machines[J].Machine Learning,2002,46(1-3):389-422.<br /> [32]EFRON B.Bootstrap Methods:Another Look at the Jackknife[J].Annals of Statistics,1979,7(1):1-26. |
[1] | LI Bin, WAN Yuan. Unsupervised Multi-view Feature Selection Based on Similarity Matrix Learning and Matrix Alignment [J]. Computer Science, 2022, 49(8): 86-96. |
[2] | HU Yan-yu, ZHAO Long, DONG Xiang-jun. Two-stage Deep Feature Selection Extraction Algorithm for Cancer Classification [J]. Computer Science, 2022, 49(7): 73-78. |
[3] | SHAN Xiao-ying, REN Ying-chun. Fishing Type Identification of Marine Fishing Vessels Based on Support Vector Machine Optimized by Improved Sparrow Search Algorithm [J]. Computer Science, 2022, 49(6A): 211-216. |
[4] | CHEN Jing-nian. Acceleration of SVM for Multi-class Classification [J]. Computer Science, 2022, 49(6A): 297-300. |
[5] | HOU Xia-ye, CHEN Hai-yan, ZHANG Bing, YUAN Li-gang, JIA Yi-zhen. Active Metric Learning Based on Support Vector Machines [J]. Computer Science, 2022, 49(6A): 113-118. |
[6] | KANG Yan, WANG Hai-ning, TAO Liu, YANG Hai-xiao, YANG Xue-kun, WANG Fei, LI Hao. Hybrid Improved Flower Pollination Algorithm and Gray Wolf Algorithm for Feature Selection [J]. Computer Science, 2022, 49(6A): 125-132. |
[7] | XING Yun-bing, LONG Guang-yu, HU Chun-yu, HU Li-sha. Human Activity Recognition Method Based on Class Increment SVM [J]. Computer Science, 2022, 49(5): 78-83. |
[8] | CHU An-qi, DING Zhi-jun. Application of Gray Wolf Optimization Algorithm on Synchronous Processing of Sample Equalization and Feature Selection in Credit Evaluation [J]. Computer Science, 2022, 49(4): 134-139. |
[9] | SUN Lin, HUANG Miao-miao, XU Jiu-cheng. Weak Label Feature Selection Method Based on Neighborhood Rough Sets and Relief [J]. Computer Science, 2022, 49(4): 152-160. |
[10] | LI Zong-ran, CHEN XIU-Hong, LU Yun, SHAO Zheng-yi. Robust Joint Sparse Uncorrelated Regression [J]. Computer Science, 2022, 49(2): 191-197. |
[11] | ZHANG Ye, LI Zhi-hua, WANG Chang-jie. Kernel Density Estimation-based Lightweight IoT Anomaly Traffic Detection Method [J]. Computer Science, 2021, 48(9): 337-344. |
[12] | YANG Lei, JIANG Ai-lian, QIANG Yan. Structure Preserving Unsupervised Feature Selection Based on Autoencoder and Manifold Regularization [J]. Computer Science, 2021, 48(8): 53-59. |
[13] | HOU Chun-ping, ZHAO Chun-yue, WANG Zhi-peng. Video Abnormal Event Detection Algorithm Based on Self-feedback Optimal Subclass Mining [J]. Computer Science, 2021, 48(7): 199-205. |
[14] | HU Yan-mei, YANG Bo, DUO Bin. Logistic Regression with Regularization Based on Network Structure [J]. Computer Science, 2021, 48(7): 281-291. |
[15] | ZHOU Gang, GUO Fu-liang. Research on Ensemble Learning Method Based on Feature Selection for High-dimensional Data [J]. Computer Science, 2021, 48(6A): 250-254. |
|