[go: up one dir, main page]

Hyperboloīd

[707] Hyperboloīd (griech.), Fläche zweiter Ordnung wie das Ellipsoid (s. d.).

Fig. 1. Zweischaliges Hyperboloid.
Fig. 1. Zweischaliges Hyperboloid.

Am einfachsten ist das Rotationshyperboloid, das man erhält, wenn man sich eine Hyperbel (s. d.) um eine ihrer Achsen gedreht denkt; je nachdem man die Hauptachse oder die Nebenachse als Drehachse benutzt, erhält man ein zweischaliges oder einschaliges Rotationshyperboloid. Das einschalige wird von jeder zur Drehachse senkrechten Ebene in einem Kreise geschnitten, beim zweischaligen dagegen ist jeder zwischen den Scheiteln der erzeugenden Hyperbel liegende Punkt der Drehachse so beschaffen, daß eine durch ihn gehende, zur Drehachse senkrechte Ebene die Fläche gar nicht trifft, die beiden in den Scheiteln auf der Drehachse senkrecht stehenden Ebenen haben mit der Fläche nur diese Scheitel gemein, während alle andern auf der Drehachse senkrechten Ebenen gleichfalls Kreise ausschneiden.

Fig. 2. Einschaliges Hyperboloid.
Fig. 2. Einschaliges Hyperboloid.

Denkt man sich ein Rotationshyperboloid so zusammengedrückt, daß aus den besprochenen Kreisen Ellipsen werden, so erhält man eine deutliche Vorstellung von dem allgemeinen, zweischaligen (Fig. 1) oder einschaligen H. (Fig. 2), die Gerade, die beim Rotationshyperboloid Drehachse war, heißt dann beim allgemeinen H. Hauptachse.

Fig. 3. Ellipsoid.
Fig. 3. Ellipsoid.

Das zweischalige H. ist in jedem seiner Punkte gekrümmt wie ein Ellipsoid (Fig. 3), das zweischalige dagegen ist in jedem Punkte sattelförmig gekrümmt.

Fig. 4. Die Geraden des einschaligen Hyperboloids.
Fig. 4. Die Geraden des einschaligen Hyperboloids.

Beim einschaligen heißt die kleinste der Ellipsen, die von einer zur Hauptachse senkrechten Ebene ausgeschnitten wird (in Fig. 2 ist sie eingezeichnet an der Stelle, wo die Fläche am stärksten eingeschnürt ist), die Kehlellipse. Auf dem einschaligen H. gehen durch jeden Punkt zwei gerade Linien, die ganz auf der Fläche liegen, es gehört also zu den Geradlinigen Flächen (s. d.). Die auf der Fläche liegenden Geraden bilden zwei Scharen, die in Fig. 4 angedeutet sind. Das einschalige Rotationshyperboloid kann man auch dadurch erhalten, daß man sich eine Gerade um eine zu ihr windschiefe Achse gedreht denkt.

Quelle:
Meyers Großes Konversations-Lexikon, Band 9. Leipzig 1907, S. 707.
Lizenz:
Faksimiles:
Kategorien:

Buchempfehlung

Aristophanes

Lysistrate. (Lysistrata)

Lysistrate. (Lysistrata)

Nach zwanzig Jahren Krieg mit Sparta treten die Athenerinnen unter Frührung Lysistrates in den sexuellen Generalstreik, um ihre kriegswütigen Männer endlich zur Räson bringen. Als Lampito die Damen von Sparta zu ebensolcher Verweigerung bringen kann, geht der Plan schließlich auf.

58 Seiten, 4.80 Euro

Im Buch blättern
Ansehen bei Amazon

Buchempfehlung

Geschichten aus dem Sturm und Drang II. Sechs weitere Erzählungen

Geschichten aus dem Sturm und Drang II. Sechs weitere Erzählungen

Zwischen 1765 und 1785 geht ein Ruck durch die deutsche Literatur. Sehr junge Autoren lehnen sich auf gegen den belehrenden Charakter der - die damalige Geisteskultur beherrschenden - Aufklärung. Mit Fantasie und Gemütskraft stürmen und drängen sie gegen die Moralvorstellungen des Feudalsystems, setzen Gefühl vor Verstand und fordern die Selbstständigkeit des Originalgenies. Für den zweiten Band hat Michael Holzinger sechs weitere bewegende Erzählungen des Sturm und Drang ausgewählt.

424 Seiten, 19.80 Euro

Ansehen bei Amazon