[go: up one dir, main page]

再帰理論(さいきりろん、英:Recursion theory)は、数理論理学の一分野で、1930年代の計算可能関数とチューリング次数の研究が源となっている。 発展の過程で、この分野は計算可能性や定義可能性全般を対象に含むようになった。これらの領域においては、再帰理論は証明論や エフェクティブ記述集合論(en)とも密接に関係する。 再帰理論の根本的疑問は「自然数から自然数への関数が計算可能であるとはどういう意味か?」と、「計算不能関数は、その計算不能性のレベルに基づいて階層分けできるか?」である。これらの疑問への答えを探す過程で豊かな理論が生まれ、現在でも活発な研究が行われている。 数理論理学における再帰理論の研究者がよく扱うのは、この記事で触れる相対的な計算可能性、還元性の概念、次数構造などである。これらは、計算機科学における計算可能性理論が、計算複雑性理論、形式手法、形式言語などを主な研究対象とすることと対照を成す。これら二つの研究コミュニティには知識と手法の面で重なる部分が多々あり、はっきりした境界を引くことは出来ない。

Property Value
dbo:abstract
  • 再帰理論(さいきりろん、英:Recursion theory)は、数理論理学の一分野で、1930年代の計算可能関数とチューリング次数の研究が源となっている。 発展の過程で、この分野は計算可能性や定義可能性全般を対象に含むようになった。これらの領域においては、再帰理論は証明論や エフェクティブ記述集合論(en)とも密接に関係する。 再帰理論の根本的疑問は「自然数から自然数への関数が計算可能であるとはどういう意味か?」と、「計算不能関数は、その計算不能性のレベルに基づいて階層分けできるか?」である。これらの疑問への答えを探す過程で豊かな理論が生まれ、現在でも活発な研究が行われている。 数理論理学における再帰理論の研究者がよく扱うのは、この記事で触れる相対的な計算可能性、還元性の概念、次数構造などである。これらは、計算機科学における計算可能性理論が、計算複雑性理論、形式手法、形式言語などを主な研究対象とすることと対照を成す。これら二つの研究コミュニティには知識と手法の面で重なる部分が多々あり、はっきりした境界を引くことは出来ない。 (ja)
  • 再帰理論(さいきりろん、英:Recursion theory)は、数理論理学の一分野で、1930年代の計算可能関数とチューリング次数の研究が源となっている。 発展の過程で、この分野は計算可能性や定義可能性全般を対象に含むようになった。これらの領域においては、再帰理論は証明論や エフェクティブ記述集合論(en)とも密接に関係する。 再帰理論の根本的疑問は「自然数から自然数への関数が計算可能であるとはどういう意味か?」と、「計算不能関数は、その計算不能性のレベルに基づいて階層分けできるか?」である。これらの疑問への答えを探す過程で豊かな理論が生まれ、現在でも活発な研究が行われている。 数理論理学における再帰理論の研究者がよく扱うのは、この記事で触れる相対的な計算可能性、還元性の概念、次数構造などである。これらは、計算機科学における計算可能性理論が、計算複雑性理論、形式手法、形式言語などを主な研究対象とすることと対照を成す。これら二つの研究コミュニティには知識と手法の面で重なる部分が多々あり、はっきりした境界を引くことは出来ない。 (ja)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1272528 (xsd:integer)
dbo:wikiPageLength
  • 21972 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 92154268 (xsd:integer)
dbo:wikiPageWikiLink
prop-ja:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • 再帰理論(さいきりろん、英:Recursion theory)は、数理論理学の一分野で、1930年代の計算可能関数とチューリング次数の研究が源となっている。 発展の過程で、この分野は計算可能性や定義可能性全般を対象に含むようになった。これらの領域においては、再帰理論は証明論や エフェクティブ記述集合論(en)とも密接に関係する。 再帰理論の根本的疑問は「自然数から自然数への関数が計算可能であるとはどういう意味か?」と、「計算不能関数は、その計算不能性のレベルに基づいて階層分けできるか?」である。これらの疑問への答えを探す過程で豊かな理論が生まれ、現在でも活発な研究が行われている。 数理論理学における再帰理論の研究者がよく扱うのは、この記事で触れる相対的な計算可能性、還元性の概念、次数構造などである。これらは、計算機科学における計算可能性理論が、計算複雑性理論、形式手法、形式言語などを主な研究対象とすることと対照を成す。これら二つの研究コミュニティには知識と手法の面で重なる部分が多々あり、はっきりした境界を引くことは出来ない。 (ja)
  • 再帰理論(さいきりろん、英:Recursion theory)は、数理論理学の一分野で、1930年代の計算可能関数とチューリング次数の研究が源となっている。 発展の過程で、この分野は計算可能性や定義可能性全般を対象に含むようになった。これらの領域においては、再帰理論は証明論や エフェクティブ記述集合論(en)とも密接に関係する。 再帰理論の根本的疑問は「自然数から自然数への関数が計算可能であるとはどういう意味か?」と、「計算不能関数は、その計算不能性のレベルに基づいて階層分けできるか?」である。これらの疑問への答えを探す過程で豊かな理論が生まれ、現在でも活発な研究が行われている。 数理論理学における再帰理論の研究者がよく扱うのは、この記事で触れる相対的な計算可能性、還元性の概念、次数構造などである。これらは、計算機科学における計算可能性理論が、計算複雑性理論、形式手法、形式言語などを主な研究対象とすることと対照を成す。これら二つの研究コミュニティには知識と手法の面で重なる部分が多々あり、はっきりした境界を引くことは出来ない。 (ja)
rdfs:label
  • 再帰理論 (ja)
  • 再帰理論 (ja)
prov:wasDerivedFrom
foaf:homepage
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is owl:sameAs of
is foaf:primaryTopic of