[go: up one dir, main page]

En mathématiques, et plus particulièrement en topologie et en topologie algébrique, un revêtement d'un espace topologique B par un espace topologique E est une application continue et surjective p : E → B telle que tout point de B appartienne à un ouvert U tel que l'image réciproque de U par p soit une union disjointe d'ouverts de E, chacun homéomorphe à U par p.

Property Value
dbo:abstract
  • En mathématiques, et plus particulièrement en topologie et en topologie algébrique, un revêtement d'un espace topologique B par un espace topologique E est une application continue et surjective p : E → B telle que tout point de B appartienne à un ouvert U tel que l'image réciproque de U par p soit une union disjointe d'ouverts de E, chacun homéomorphe à U par p. Il s'agit donc d'un fibré à fibres discrètes.Les revêtements jouent un rôle pour calculer le groupe fondamental et les groupes d'homotopie d'un espace. Un résultat de la théorie des revêtements est que si B est connexe par arcs et localement simplement connexe, il y a une correspondance bijective entre les revêtements connexes par arcs de B, à isomorphisme près, et les sous-groupes du groupe fondamental de B. (fr)
  • En mathématiques, et plus particulièrement en topologie et en topologie algébrique, un revêtement d'un espace topologique B par un espace topologique E est une application continue et surjective p : E → B telle que tout point de B appartienne à un ouvert U tel que l'image réciproque de U par p soit une union disjointe d'ouverts de E, chacun homéomorphe à U par p. Il s'agit donc d'un fibré à fibres discrètes.Les revêtements jouent un rôle pour calculer le groupe fondamental et les groupes d'homotopie d'un espace. Un résultat de la théorie des revêtements est que si B est connexe par arcs et localement simplement connexe, il y a une correspondance bijective entre les revêtements connexes par arcs de B, à isomorphisme près, et les sous-groupes du groupe fondamental de B. (fr)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 901881 (xsd:integer)
dbo:wikiPageLength
  • 16855 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190131528 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En mathématiques, et plus particulièrement en topologie et en topologie algébrique, un revêtement d'un espace topologique B par un espace topologique E est une application continue et surjective p : E → B telle que tout point de B appartienne à un ouvert U tel que l'image réciproque de U par p soit une union disjointe d'ouverts de E, chacun homéomorphe à U par p. (fr)
  • En mathématiques, et plus particulièrement en topologie et en topologie algébrique, un revêtement d'un espace topologique B par un espace topologique E est une application continue et surjective p : E → B telle que tout point de B appartienne à un ouvert U tel que l'image réciproque de U par p soit une union disjointe d'ouverts de E, chacun homéomorphe à U par p. (fr)
rdfs:label
  • Espacio recubridor (es)
  • Espai revestiment (ca)
  • Không gian phủ (vi)
  • Revêtement (mathématiques) (fr)
  • Rivestimento (topologia) (it)
  • Накрытие (ru)
  • Espacio recubridor (es)
  • Espai revestiment (ca)
  • Không gian phủ (vi)
  • Revêtement (mathématiques) (fr)
  • Rivestimento (topologia) (it)
  • Накрытие (ru)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of