Property |
Value |
dbo:abstract
|
- En mathématiques, la planche de Tychonoff — nommée d'après Andreï Nikolaïevitch Tikhonov — est un espace topologique utilisé comme contre-exemple. C'est le produit [0, ω1]×[0, ω] de deux espaces topologiques associés à des ordinaux, où ω désigne le premier ordinal infini et ω1 le premier ordinal non dénombrable. La planche de Tychonoff épointée est le sous-espace obtenu en enlevant le point ∞ = (ω1, ω). C'est un espace non normal, bien que localement compact donc complètement régulier. Par conséquent, la planche de Tychonoff n'est pas complètement normale ; c'est pourtant un espace compact donc normal. La planche de Tychonoff n'est pas parfaitement normale (puisqu'elle n'est pas complètement normale, ou encore, puisque le singleton {∞} est fermé mais n'est pas un Gδ). (fr)
- En mathématiques, la planche de Tychonoff — nommée d'après Andreï Nikolaïevitch Tikhonov — est un espace topologique utilisé comme contre-exemple. C'est le produit [0, ω1]×[0, ω] de deux espaces topologiques associés à des ordinaux, où ω désigne le premier ordinal infini et ω1 le premier ordinal non dénombrable. La planche de Tychonoff épointée est le sous-espace obtenu en enlevant le point ∞ = (ω1, ω). C'est un espace non normal, bien que localement compact donc complètement régulier. Par conséquent, la planche de Tychonoff n'est pas complètement normale ; c'est pourtant un espace compact donc normal. La planche de Tychonoff n'est pas parfaitement normale (puisqu'elle n'est pas complètement normale, ou encore, puisque le singleton {∞} est fermé mais n'est pas un Gδ). (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 2187 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En mathématiques, la planche de Tychonoff — nommée d'après Andreï Nikolaïevitch Tikhonov — est un espace topologique utilisé comme contre-exemple. C'est le produit [0, ω1]×[0, ω] de deux espaces topologiques associés à des ordinaux, où ω désigne le premier ordinal infini et ω1 le premier ordinal non dénombrable. La planche de Tychonoff épointée est le sous-espace obtenu en enlevant le point ∞ = (ω1, ω). C'est un espace non normal, bien que localement compact donc complètement régulier. (fr)
- En mathématiques, la planche de Tychonoff — nommée d'après Andreï Nikolaïevitch Tikhonov — est un espace topologique utilisé comme contre-exemple. C'est le produit [0, ω1]×[0, ω] de deux espaces topologiques associés à des ordinaux, où ω désigne le premier ordinal infini et ω1 le premier ordinal non dénombrable. La planche de Tychonoff épointée est le sous-espace obtenu en enlevant le point ∞ = (ω1, ω). C'est un espace non normal, bien que localement compact donc complètement régulier. (fr)
|
rdfs:label
|
- Planche de Tychonoff (fr)
- Tychonoff plank (en)
- Плоскость Тихонова (ru)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |