Property |
Value |
dbo:abstract
|
- En mathématiques, en particulier dans la théorie des formes quadratiques non dégénérées sur les espaces vectoriels réels et complexes, les algèbres de Clifford de dimension finie ont été complètement classées. Dans chaque cas, l'algèbre de Clifford est isomorphe à une algèbre de matrices sur ℝ, ℂ ou ℍ (les quaternions), ou à une somme directe de deux de ces algèbres, mais pas de manière canonique. Notation et conventions. Dans cet article, nous utiliserons la convention de signe (+) pour la multiplication de Clifford, c’est-à-dire où Q est la forme quadratique sur l'espace vectoriel V. Nous désignerons par K(n) l'algèbre de matrices n×n à coefficients dans l'algèbre à division K. La somme directe des algèbres sera désignée par K2(n) = K(n)⊕K(n). (fr)
- En mathématiques, en particulier dans la théorie des formes quadratiques non dégénérées sur les espaces vectoriels réels et complexes, les algèbres de Clifford de dimension finie ont été complètement classées. Dans chaque cas, l'algèbre de Clifford est isomorphe à une algèbre de matrices sur ℝ, ℂ ou ℍ (les quaternions), ou à une somme directe de deux de ces algèbres, mais pas de manière canonique. Notation et conventions. Dans cet article, nous utiliserons la convention de signe (+) pour la multiplication de Clifford, c’est-à-dire où Q est la forme quadratique sur l'espace vectoriel V. Nous désignerons par K(n) l'algèbre de matrices n×n à coefficients dans l'algèbre à division K. La somme directe des algèbres sera désignée par K2(n) = K(n)⊕K(n). (fr)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 10647 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En mathématiques, en particulier dans la théorie des formes quadratiques non dégénérées sur les espaces vectoriels réels et complexes, les algèbres de Clifford de dimension finie ont été complètement classées. Dans chaque cas, l'algèbre de Clifford est isomorphe à une algèbre de matrices sur ℝ, ℂ ou ℍ (les quaternions), ou à une somme directe de deux de ces algèbres, mais pas de manière canonique. Notation et conventions. Dans cet article, nous utiliserons la convention de signe (+) pour la multiplication de Clifford, c’est-à-dire (fr)
- En mathématiques, en particulier dans la théorie des formes quadratiques non dégénérées sur les espaces vectoriels réels et complexes, les algèbres de Clifford de dimension finie ont été complètement classées. Dans chaque cas, l'algèbre de Clifford est isomorphe à une algèbre de matrices sur ℝ, ℂ ou ℍ (les quaternions), ou à une somme directe de deux de ces algèbres, mais pas de manière canonique. Notation et conventions. Dans cet article, nous utiliserons la convention de signe (+) pour la multiplication de Clifford, c’est-à-dire (fr)
|
rdfs:label
|
- Classification des algèbres de Clifford (fr)
- Classification des algèbres de Clifford (fr)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |