dbo:abstract
|
- Une approximation est une représentation imprécise ayant toutefois un lien étroit avec la quantité ou l’objet qu’elle reflète : approximation d’un nombre (de π par 3,14, de la vitesse instantanée d’un véhicule par sa vitesse moyenne entre deux points), d’une fonction mathématique, d’une solution d’un problème d’optimisation, d’une forme géométrique, d’une loi physique. Lorsqu’une partie de l’information nécessaire fait défaut, une approximation peut se substituer à une représentation exacte. Cependant, même si cette dernière est connue, une approximation est parfois préférable par le fait qu’elle simplifie l’analyse sans générer de trop grandes erreurs. Par exemple, les physiciens rapprochent souvent la forme de la Terre à celle d’une sphère, même si des représentations plus précises sont possibles : plusieurs phénomènes physiques (telle la pesanteur) sont en effet plus faciles à étudier en supposant une sphère à la place d’une forme plus complexe. Le choix d’un degré d’approximation dépend de l’information disponible, du niveau d’exactitude souhaité, de la sensibilité des résultats aux données, des gains de temps et d’effort qui en découlent. (fr)
- Une approximation est une représentation imprécise ayant toutefois un lien étroit avec la quantité ou l’objet qu’elle reflète : approximation d’un nombre (de π par 3,14, de la vitesse instantanée d’un véhicule par sa vitesse moyenne entre deux points), d’une fonction mathématique, d’une solution d’un problème d’optimisation, d’une forme géométrique, d’une loi physique. Lorsqu’une partie de l’information nécessaire fait défaut, une approximation peut se substituer à une représentation exacte. Cependant, même si cette dernière est connue, une approximation est parfois préférable par le fait qu’elle simplifie l’analyse sans générer de trop grandes erreurs. Par exemple, les physiciens rapprochent souvent la forme de la Terre à celle d’une sphère, même si des représentations plus précises sont possibles : plusieurs phénomènes physiques (telle la pesanteur) sont en effet plus faciles à étudier en supposant une sphère à la place d’une forme plus complexe. Le choix d’un degré d’approximation dépend de l’information disponible, du niveau d’exactitude souhaité, de la sensibilité des résultats aux données, des gains de temps et d’effort qui en découlent. (fr)
|
rdfs:comment
|
- Une approximation est une représentation imprécise ayant toutefois un lien étroit avec la quantité ou l’objet qu’elle reflète : approximation d’un nombre (de π par 3,14, de la vitesse instantanée d’un véhicule par sa vitesse moyenne entre deux points), d’une fonction mathématique, d’une solution d’un problème d’optimisation, d’une forme géométrique, d’une loi physique. Le choix d’un degré d’approximation dépend de l’information disponible, du niveau d’exactitude souhaité, de la sensibilité des résultats aux données, des gains de temps et d’effort qui en découlent. (fr)
- Une approximation est une représentation imprécise ayant toutefois un lien étroit avec la quantité ou l’objet qu’elle reflète : approximation d’un nombre (de π par 3,14, de la vitesse instantanée d’un véhicule par sa vitesse moyenne entre deux points), d’une fonction mathématique, d’une solution d’un problème d’optimisation, d’une forme géométrique, d’une loi physique. Le choix d’un degré d’approximation dépend de l’information disponible, du niveau d’exactitude souhaité, de la sensibilité des résultats aux données, des gains de temps et d’effort qui en découlent. (fr)
|