dbo:abstract
|
- Die Symbolische Dynamik ist ein Zweig der Theorie dynamischer Systeme, in dem Methoden der Formalen Sprachen (Grammatiktheorie, Automatentheorie, Komplexitätstheorie) und der Theorie stochastischer Prozesse zur Anwendung kommen. Der Ausgangspunkt der symbolischen Dynamik ist ein zeitdiskretes dynamisches System mit Zustandsraum und Fluss , wobei entweder gleich oder für reversible Dynamik gleich ist. Durch eine Partition des Zustandsraums in eine endliche Anzahl von n Teilmengen gewinnt man eine Vorschrift, wie eine Anfangsbedingung auf eine Symbolsequenz abzubilden ist: Weise der Anfangsbedingung ein Symbol zu, wenn , weise dann dem Folgezustand ein Symbol zu, wenn , kurz: Weise dem Zustand ein Symbol zu, wenn . Die Folge der von der Bahnkurve durchzogenen Teilmengen kann dann als Symbolsequenz mit Symbolen angesehen werden. Dabei ist ein endliches Alphabet bestehend aus so vielen Symbolen wie es Teilmengen der Partition gibt. Abhängig von der Zeitmenge erhält man entweder einseitig unendliche Symbolsequenzen , wenn (engl. one-sided shifts), oder zweiseitig unendliche Symbolsequenzen , wenn (engl. two-sided shifts). Der Punkt nach kennzeichnet üblicherweise die Anfangsbedingung. Die Menge der Symbolsequenzen, der Zustandsraum der symbolischen Dynamik, wird dann (einseitig), bzw. geschrieben. Die obige Konstruktionsvorschrift einer Symbolsequenz entspricht dann einer Abbildung , so dass , wenn , wobei der Teilmenge der Partition das Symbol zugeordnet ist. Zwischen den symbolischen Darstellungen einer Anfangsbedingung und ihrer ersten Iteration besteht ein simpler Zusammenhang: Während durch die Sequenz dargestellt wird, beginnt die Konstruktion der Symbolsequenz für mit dem Symbol . Daher wird durch die Folge dargestellt. unterscheidet sich also von dadurch, dass alle Symbole in um eine Stelle nach links (oder der Punkt um eine Stelle nach rechts) gerückt sind. Daher gibt es eine Abbildung auf dem Raum der Symbolsequenzen , mit . Die Abbildung wird Linksverschiebung (engl. left-shift) genannt. heißen symbolische Dynamik. Zwischen dem ursprünglichen System und der symbolischen Dynamik besteht der Zusammenhang . (de)
- En mathématiques, la dynamique symbolique est une branche de l'étude des systèmes dynamiques. Cela consiste à étudier un système en partitionnant l'espace en un nombre fini de régions et en s'intéressant aux suites possibles de régions traversées lors de l'évolution du système. Si l'on associe à chaque région un symbole, on peut associer à chaque trajectoire une suite (infinie) de symboles, d'où le nom de « dynamique symbolique ». Les trajectoires symboliques ne sont bien sûr qu'une approximation des trajectoires réelles, mais elles peuvent refléter certaines propriétés du système réel comme la transitivité, la récurrence ou l'entropie. On trouvera une introduction générale au domaine dans . Parmi les articles précurseurs, on peut citer et . considèrent que la dynamique symbolique, en tant que discipline autonome, débute véritablement avec l'article de . (fr)
- In mathematics, symbolic dynamics is the practice of modeling a topological or smooth dynamical system by a discrete space consisting of infinite sequences of abstract symbols, each of which corresponds to a state of the system, with the dynamics (evolution) given by the shift operator. Formally, a Markov partition is used to provide a finite cover for the smooth system; each set of the cover is associated with a single symbol, and the sequences of symbols result as a trajectory of the system moves from one covering set to another. (en)
- Символическая динамика — объединяющее название класса динамических систем, для которых точками фазового пространства являются последовательности в некотором конечном алфавите «символов», а отображение заключается в сдвиге последовательности на один символ влево. Простейшими примерами являются сдвиг Бернулли и сдвиг Маркова. Символическая динамика также возникает при рассмотрении отображения судьбы. (ru)
- 符号动力学是数学中研究符号动力系统的学科。在符号动力系统中,系统的状态可以表示成有限个抽象符号的无穷序列,由任一状态点的运动轨迹可以通过简单的移位规则来确定。 (zh)
|
rdfs:comment
|
- In mathematics, symbolic dynamics is the practice of modeling a topological or smooth dynamical system by a discrete space consisting of infinite sequences of abstract symbols, each of which corresponds to a state of the system, with the dynamics (evolution) given by the shift operator. Formally, a Markov partition is used to provide a finite cover for the smooth system; each set of the cover is associated with a single symbol, and the sequences of symbols result as a trajectory of the system moves from one covering set to another. (en)
- Символическая динамика — объединяющее название класса динамических систем, для которых точками фазового пространства являются последовательности в некотором конечном алфавите «символов», а отображение заключается в сдвиге последовательности на один символ влево. Простейшими примерами являются сдвиг Бернулли и сдвиг Маркова. Символическая динамика также возникает при рассмотрении отображения судьбы. (ru)
- 符号动力学是数学中研究符号动力系统的学科。在符号动力系统中,系统的状态可以表示成有限个抽象符号的无穷序列,由任一状态点的运动轨迹可以通过简单的移位规则来确定。 (zh)
- Die Symbolische Dynamik ist ein Zweig der Theorie dynamischer Systeme, in dem Methoden der Formalen Sprachen (Grammatiktheorie, Automatentheorie, Komplexitätstheorie) und der Theorie stochastischer Prozesse zur Anwendung kommen. Der Ausgangspunkt der symbolischen Dynamik ist ein zeitdiskretes dynamisches System mit Zustandsraum und Fluss , wobei entweder gleich oder für reversible Dynamik gleich ist. Durch eine Partition des Zustandsraums in eine endliche Anzahl von n Teilmengen gewinnt man eine Vorschrift, wie eine Anfangsbedingung auf eine Symbolsequenz abzubilden ist: (de)
- En mathématiques, la dynamique symbolique est une branche de l'étude des systèmes dynamiques. Cela consiste à étudier un système en partitionnant l'espace en un nombre fini de régions et en s'intéressant aux suites possibles de régions traversées lors de l'évolution du système. Si l'on associe à chaque région un symbole, on peut associer à chaque trajectoire une suite (infinie) de symboles, d'où le nom de « dynamique symbolique ». (fr)
|