dbo:abstract
|
- Les paramètres des plasmas, y compris leur extension spatiale et temporelle, peuvent varier, selon les phénomènes concernés, dans des plages de nombreux ordres de grandeur. Cependant, il existe des similarités significatives dans le comportement de plasmas en apparence disparates. La compréhension de cette similitude de comportement n'est pas seulement d'intérêt théorique, elle permet également d'appliquer les résultats d'expériences de laboratoire à des plasmas naturels ou artificiels de plus grande taille auxquels on est amené à s'intéresser. Le principe est le même que celui employé pour tester les avions ou étudier les turbulences naturelles dans une soufflerie. Des lois de similitude (également appelées transformations de similitude) permettent d'aider à comprendre comment les propriétés des plasmas changent d'une façon telle que leurs caractéristiques soient conservées. Une première étape indispensable consiste à exprimer les lois qui gouvernent le système sous une forme adimensionnée. Le choix de paramètres non dimensionnels n'étant jamais unique, on ne peut habituellement le réaliser qu'en ignorant délibérément certains aspects du système. L'un des paramètres sans dimension caractérisant un plasma est le rapport des masses entre ion et électron. Sa valeur étant élevée - 1836 au minimum -, on le considère couramment comme infini dans les analyses théoriques, ce qui revient à attribuer, soit une masse nulle aux électrons, soit une masse infinie aux ions. Dans les études numériques, le problème opposé apparaît souvent. Comme l'utilisation d'un rapport de masses réaliste rendrait, en raison d'un temps de calcul prohibitif, le problème impossible à traiter, on lui substitue une valeur artificiellement petite, mais pas trop, par exemple 100. Cependant, pour analyser certains phénomènes, comme l'oscillation hybride inférieure, il est essentiel d'utiliser la bonne valeur. (fr)
- The parameters of plasmas, including their spatial and temporal extent, vary by many orders of magnitude. Nevertheless, there are significant similarities in the behaviors of apparently disparate plasmas. Understanding the scaling of plasma behavior is of more than theoretical value. It allows the results of laboratory experiments to be applied to larger natural or artificial plasmas of interest. The situation is similar to testing aircraft or studying natural turbulent flow in wind tunnels with smaller-scale models. Similarity transformations (also called similarity laws) help us work out how plasma properties change in order to retain the same characteristics. A necessary first step is to express the laws governing the system in a nondimensional form. The choice of nondimensional parameters is never unique, and it is usually only possible to achieve by choosing to ignore certain aspects of the system. One dimensionless parameter characterizing a plasma is the ratio of ion to electron mass. Since this number is large, at least 1836, it is commonly taken to be infinite in theoretical analyses, that is, either the electrons are assumed to be massless or the ions are assumed to be infinitely massive. In numerical studies the opposite problem often appears. The computation time would be intractably large if a realistic mass ratio were used, so an artificially small but still rather large value, for example 100, is substituted. To analyze some phenomena, such as lower hybrid oscillations, it is essential to use the proper value. (en)
|
rdfs:comment
|
- The parameters of plasmas, including their spatial and temporal extent, vary by many orders of magnitude. Nevertheless, there are significant similarities in the behaviors of apparently disparate plasmas. Understanding the scaling of plasma behavior is of more than theoretical value. It allows the results of laboratory experiments to be applied to larger natural or artificial plasmas of interest. The situation is similar to testing aircraft or studying natural turbulent flow in wind tunnels with smaller-scale models. (en)
- Les paramètres des plasmas, y compris leur extension spatiale et temporelle, peuvent varier, selon les phénomènes concernés, dans des plages de nombreux ordres de grandeur. Cependant, il existe des similarités significatives dans le comportement de plasmas en apparence disparates. La compréhension de cette similitude de comportement n'est pas seulement d'intérêt théorique, elle permet également d'appliquer les résultats d'expériences de laboratoire à des plasmas naturels ou artificiels de plus grande taille auxquels on est amené à s'intéresser. Le principe est le même que celui employé pour tester les avions ou étudier les turbulences naturelles dans une soufflerie. (fr)
|