dbo:abstract
|
- In der Differentialtopologie und in der Algebraischen Topologie bezeichnet die Schnittzahl oder Schnittmultiplizität eine ganze Zahl, welche den Schnittpunkten orientierter Untermannigfaltigkeiten bzw. Homologieklassen von orientierten Mannigfaltigkeiten zugeordnet werden kann. (de)
- En algebra geometrio, intersekca nombro estas obleco de intersekco de du kurboj. Ekzemple du kurboj intersekcanta je punkto povas esti konsiderataj kiel intersekcantaj dufoje se ili estas tanĝantaj tie. La n-obla intersekco estas limiganta okazo de n apartaj intersekcoj je n malsamaj punktoj, se la punktoj estas movitaj tiel ke ili ekkoincidas. Kalkulado de la obleco de intersekco bezonatas por preciza formulaĵo de teoremo de Bézout. Ankaŭ, teoremoj pri fiksaj punktoj estas pri intersekcoj de grafikaĵo de funkcio kun diagonaloj; oni deziras kalkuli la fiksajn punktojn kun obleco por ke havi la en kvanteca formo. Pli ĝenerala okazo estas intersekcoj en pli alte-dimensia okazo kaj ankaŭ tiam povas esti necese konsideri de la oblecojn de ĉi tiaj intersekcoj. Ekzemple se ebeno estas tanĝanta al cilindra surfaco laŭ rekto, ĉi tiu rekto devas esti kalkulita kiel intersekco kun obleco 2. Ĉi tiuj demandoj estas diskutitaj sisteme en . (eo)
- In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem. The intersection number is obvious in certain cases, such as the intersection of x- and y-axes which should be one. The complexity enters when calculating intersections at points of tangency and intersections along positive dimensional sets. For example, if a plane is tangent to a surface along a line, the intersection number along the line should be at least two. These questions are discussed systematically in intersection theory. (en)
- 代数幾何学では、交点数(intersection number)とは、直感的な 2つの曲線の交わる数という考えを、高次元へで(2つ以上の)交叉する曲線や、接する場合も適切に数え上げる考えたものである。ベズーの定理のような結果を記述するために、交点数の定義を正確に定義する必要がある。 x-軸と y-軸のような場合には、交点数は明らかに 1 である。一点で接している場合や、正の次元の集合の中での交点数になると複雑になってくる。例えば、平面がある直線に沿って接しているときは、交点数はすくなくとも 2でなければならない.これらの疑問は交点理論で系統的に議論される。 (ja)
- ( 이 문서는 대수기하학의 교차수에 관한 것입니다. 그래프 이론의 교차수에 대해서는 그래프 교차수 문서를 참고하십시오.) 대수기하학에서 교차수(交叉數, 영어: intersection number)는 서로 다른 부분 대수다양체가 만나는 수를 중복도를 고려하여 센 것이다. 중복도를 적절히 고려해야지만 베주 정리 등이 성립하게 된다. (ko)
- Индекс пересечения — , характеризующий алгебраическое (то есть учитывающее ориентацию) число точек пересечения двух подмножеств дополнительных размерностей в евклидовом пространстве или ориентированном многообразии (находящихся в общем положении).В случае неориентируемого многообразия в качестве кольца коэффициентов для гомологии рассматривается . (ru)
|
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 18147 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- In der Differentialtopologie und in der Algebraischen Topologie bezeichnet die Schnittzahl oder Schnittmultiplizität eine ganze Zahl, welche den Schnittpunkten orientierter Untermannigfaltigkeiten bzw. Homologieklassen von orientierten Mannigfaltigkeiten zugeordnet werden kann. (de)
- 代数幾何学では、交点数(intersection number)とは、直感的な 2つの曲線の交わる数という考えを、高次元へで(2つ以上の)交叉する曲線や、接する場合も適切に数え上げる考えたものである。ベズーの定理のような結果を記述するために、交点数の定義を正確に定義する必要がある。 x-軸と y-軸のような場合には、交点数は明らかに 1 である。一点で接している場合や、正の次元の集合の中での交点数になると複雑になってくる。例えば、平面がある直線に沿って接しているときは、交点数はすくなくとも 2でなければならない.これらの疑問は交点理論で系統的に議論される。 (ja)
- ( 이 문서는 대수기하학의 교차수에 관한 것입니다. 그래프 이론의 교차수에 대해서는 그래프 교차수 문서를 참고하십시오.) 대수기하학에서 교차수(交叉數, 영어: intersection number)는 서로 다른 부분 대수다양체가 만나는 수를 중복도를 고려하여 센 것이다. 중복도를 적절히 고려해야지만 베주 정리 등이 성립하게 된다. (ko)
- Индекс пересечения — , характеризующий алгебраическое (то есть учитывающее ориентацию) число точек пересечения двух подмножеств дополнительных размерностей в евклидовом пространстве или ориентированном многообразии (находящихся в общем положении).В случае неориентируемого многообразия в качестве кольца коэффициентов для гомологии рассматривается . (ru)
- En algebra geometrio, intersekca nombro estas obleco de intersekco de du kurboj. Ekzemple du kurboj intersekcanta je punkto povas esti konsiderataj kiel intersekcantaj dufoje se ili estas tanĝantaj tie. La n-obla intersekco estas limiganta okazo de n apartaj intersekcoj je n malsamaj punktoj, se la punktoj estas movitaj tiel ke ili ekkoincidas. Ĉi tiuj demandoj estas diskutitaj sisteme en . (eo)
- In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem. (en)
|
rdfs:label
|
- Schnittzahl (de)
- Obleco de intersekco (eo)
- Intersection number (en)
- 交点数 (代数幾何学) (ja)
- 교차수 (ko)
- Индекс пересечения (алгебраическая топология) (ru)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |