[go: up one dir, main page]

An Entity of Type: Difference104748836, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, in the field of functional analysis, the Cotlar–Stein almost orthogonality lemma is named after mathematicians Mischa Cotlarand Elias Stein. It may be used to obtain information on the operator norm on an operator, acting from one Hilbert space into anotherwhen the operator can be decomposed into almost orthogonal pieces.The original version of this lemma(for self-adjoint and mutually commuting operators)was proved by Mischa Cotlar in 1955 and allowed him to conclude that the Hilbert transformis a continuous linear operator in without using the Fourier transform.A more general version was proved by Elias Stein.

Property Value
dbo:abstract
  • In mathematics, in the field of functional analysis, the Cotlar–Stein almost orthogonality lemma is named after mathematicians Mischa Cotlarand Elias Stein. It may be used to obtain information on the operator norm on an operator, acting from one Hilbert space into anotherwhen the operator can be decomposed into almost orthogonal pieces.The original version of this lemma(for self-adjoint and mutually commuting operators)was proved by Mischa Cotlar in 1955 and allowed him to conclude that the Hilbert transformis a continuous linear operator in without using the Fourier transform.A more general version was proved by Elias Stein. (en)
  • En el campo del análisis funcional, el lema de ortogonalidad de Cotlar puede ser usado para obtener información de la norma de un operador que actúa desde un Espacio de Hilbert en otro, cuando el operador puede ser descompuesto en piezas ortogonales. (es)
dbo:wikiPageID
  • 8203600 (xsd:integer)
dbo:wikiPageLength
  • 6638 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1099656338 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • In mathematics, in the field of functional analysis, the Cotlar–Stein almost orthogonality lemma is named after mathematicians Mischa Cotlarand Elias Stein. It may be used to obtain information on the operator norm on an operator, acting from one Hilbert space into anotherwhen the operator can be decomposed into almost orthogonal pieces.The original version of this lemma(for self-adjoint and mutually commuting operators)was proved by Mischa Cotlar in 1955 and allowed him to conclude that the Hilbert transformis a continuous linear operator in without using the Fourier transform.A more general version was proved by Elias Stein. (en)
  • En el campo del análisis funcional, el lema de ortogonalidad de Cotlar puede ser usado para obtener información de la norma de un operador que actúa desde un Espacio de Hilbert en otro, cuando el operador puede ser descompuesto en piezas ortogonales. (es)
rdfs:label
  • Lema de Cotlar (es)
  • Cotlar–Stein lemma (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License