Aguilera, R.F. The role of natural gas in a low carbon Asia Pacific. Appl. Energy 2014, 113, 1795–1800. [CrossRef]
Ahn, J.; Woo, J.; Lee, J. Optimal allocation of energy sources for sustainable development in South Korea: Focus on the electric power generation industry. Energy Policy 2015, 78, 78–90. [CrossRef]
- Augutis, J.; Martišauskas, L.; Krikštolaitis, R. Energy mix optimization from an energy security perspective. Energy Conv. Manag. 2015, 90, 300–314. [CrossRef]
Paper not yet in RePEc: Add citation now
Awerbuch, S. Portfolio-based electricity generation planning: Policy implications for renewables and energy security. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 693–710. [CrossRef]
Bhattacharya, A.; Kojima, S. Power sector investment risk and renewable energy: A Japanese case study using portfolio risk optimization method. Energy Policy 2012, 40, 69–80. [CrossRef]
- Biegler, T. The Hidden Costs of Electricity: Externalities of Power Generation in Australia; The Australian Academy of Technological Sciences and Engineering: Parkville, Australia, 2009. Energies 2017, 10, 1127 17 of 19
Paper not yet in RePEc: Add citation now
- Bloomberg New Energy Finance. Levelized Cost of Electricity Update: H1 2016. 2016. Available online: https://about.bnef.com/ (accessed on 27 July 2017).
Paper not yet in RePEc: Add citation now
Borchers, A.M.; Duke, J.M.; Parsons, G.R. Does willingness to pay for green energy differ by source? Energy Policy 2007, 35, 3327–3334. [CrossRef]
Bronfman, N.C.; Jimenez, R.B.; Arevalo, P.C.; Cifuentes, L.A. Understanding social acceptance of electricity generation sources. Energy Policy 2012, 46, 246–252. [CrossRef]
Byun, H.; Lee, C.Y. Analyzing Korean consumers’ latent preferences for electricity generation sources with a hierarchical Bayesian logit model in a discrete choice experiment. Energy Policy 2017, 105, 294–302. [CrossRef]
Cabello, J.M.; Luque, M.; Miguel, F.; Ruiz, A.B.; Ruiz, F. A multiobjective interactive approach to determine the optimal electricity mix in AndalucÃÂa (Spain). Top 2014, 22, 109–127. [CrossRef]
- Chen, X.; Peterson, M.N.; Hull, V.; Lu, C.; Lee, G.D.; Hong, D.; Liu, J. Effects of attitudinal and sociodemographic factors on pro-environmental behavior in urban China. Environ. Conserv. 2011, 38, 45–52. [CrossRef]
Paper not yet in RePEc: Add citation now
- Commission for Environment Cooperation. North American Power Plant Air Emissions. 2011. Available online: http://www3.cec.org/islandora/en/item/10236-north-american-power-plant-air-emissions-en.pdf (accessed on 27 July 2017).
Paper not yet in RePEc: Add citation now
Contu, D.; Strazzera, E.; Mourato, S. Modeling individual preferences for energy sources: The case of IV generation nuclear energy in Italy. Ecol. Econ. 2016, 127, 37–58. [CrossRef]
- Ebright, R. Nuclear Power: An Environmental Friendly, Clean, Reliable and Safe Electrical Power Source for Today and for the Future. 2011. Available online: https://energy.nd.edu/assets/37714/ebright_slides_02_ 21_20112.pdf (accessed on 27 July 2017).
Paper not yet in RePEc: Add citation now
Foley, A.M.; Gallachóir, B.Ó.; Hur, J.; Baldick, R.; McKeogh, E.J. A strategic review of electricity systems models. Energy 2010, 35, 4522–4530. [CrossRef]
Geem, Z.W.; Kim, J.H. Optimal energy mix with Renewable Portfolio Standards in Korea. Sustainability 2016, 8, 423. [CrossRef]
Goett, A.A.; Hudson, K.; Train, K.E. Customers’ choice among retail energy suppliers: The willingness-to-pay for service attributes. Energy J. 2000, 21, 1–28. [CrossRef]
Gracia, A.; Barreiro-Hurle, J.; Perez, L.P. Can renewable energy be financed with higher electricity prices? Evidence from a Spanish region. Energy Policy 2012, 50, 784–794. [CrossRef]
Grösche, P.; Schröder, C. Eliciting public support for greening the electricity mix using random parameter techniques. Energy Econ. 2011, 33, 363–370. [CrossRef]
Greene, W.H.; Hensher, D.A. A latent class model for discrete choice analysis: Contrasts with mixed logit. Transp. Res. Part B Methodol. 2003, 37, 681–698. [CrossRef]
- Heo, E. Global energy environment change and issues in Korea’s future energy mix. Korean Energy Econ. Rev. 2011, 10, 187–205. (In Korean)
Paper not yet in RePEc: Add citation now
Huang, Y.H.; Wu, J.H. A portfolio risk analysis on electricity supply planning. Energy Policy 2008, 36, 627–641. [CrossRef]
Huh, S.Y.; Woo, J.; Lim, S.; Lee, Y.G.; Kim, C.S. What do customers want from improved residential electricity services? Evidence from a choice experiment. Energy Policy 2015, 85, 410–420. [CrossRef]
- International Energy Agency. Projected Costs of Generating Electricity, 2015th ed.; OECD: Paris, France, 2015.
Paper not yet in RePEc: Add citation now
Kaenzig, J.; Heinzle, S.L.; Wustenhagen, R. Whatever the customer wants, the customer gets? Exploring the gap between consumer preferences and default electricity products in Germany. Energy Policy 2013, 53, 311–322. [CrossRef] Energies 2017, 10, 1127 18 of 19
Kim, Y.; Kim, W.; Kim, M. An international comparative analysis of public acceptance of nuclear energy. Energy Policy 2014, 66, 475–483. [CrossRef]
- Korea Electric Power Corporation. The Monthly Report on Major Electric Power Statistics; Korea Electric Power Corporation: Naju, Korea, 2016. (In Korean)
Paper not yet in RePEc: Add citation now
- Korea Power Exchange. Power Market Statistics in 2015; Korea Power Exchange: Naju, Korea, 2016. (In Korean) Energies 2017, 10, 1127 19 of 19
Paper not yet in RePEc: Add citation now
- Korean Government Ministry of Trade Industry and Energy (MOTIE). The 7th Basic Plan of Long-Term Electricity Supply and Demand; MOTIE: Sejong, Korea, 2015. (In Korean)
Paper not yet in RePEc: Add citation now
- Lee, C.Y. Forecasting Price for the Renewable Energy Certificate in South Korea; Korea Energy Economics Institute: Ulsan, Korea, 2015. (In Korean)
Paper not yet in RePEc: Add citation now
- Magidson, J.; Vermunt, J.K. Latent class models for clustering: A comparison with K-means. Can. J. Mark. Res. 2002, 20, 37–44.
Paper not yet in RePEc: Add citation now
- National Energy Technology Laboratory. Life Cycle Greenhouse Gas Emissions: Natural Gas and Power Production. 2015. Available online: https://www.eia.gov/conference/2015/pdf/presentations/skone.pdf (accessed on 27 July 2017).
Paper not yet in RePEc: Add citation now
- Orme, B. Formulating Attributes and Levels in Conjoint Analysis; Sawtooth Software: Washington, DC, USA, 2002. 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Paper not yet in RePEc: Add citation now
Purwanto, W.W.; Pratama, Y.W.; Nugroho, Y.S.; Warjito; Hertono, G.F.; Hartono, D.; Deendarlianto; Tezuka, T. Multi-objective optimization model for sustainable Indonesian electricity system: Analysis of economic, environment, and adequacy of energy sources. Renew. Energy 2015, 81, 308–318. [CrossRef]
Rentizelas, A.; Georgakellos, D. Incorporating life cycle external cost in optimization of the electricity generation mix. Energy Policy 2014, 65, 134–149. [CrossRef]
Ryu, H.; Dorjragchaa, S.; Kim, Y.; Kim, K. Electricity-generation mix considering energy security and carbon emission mitigation: Case of Korea and Mongolia. Energy 2014, 64, 1071–1079. [CrossRef]
Shin, J.; Woo, J.; Huh, S.Y.; Lee, J.; Jeong, G. Analyzing public preferences and increasing acceptability for the Renewable Portfolio Standard in Korea. Energy Econ. 2014, 42, 17–26. [CrossRef]
Sithole, H.; Cockerill, T.T.; Hughes, K.J.; Ingham, D.B.; Ma, L.; Porter, R.T.J.; Pourkashanian, M. Developing an optimal electricity generation mix for the UK 2050 future. Energy 2016, 100, 363–373. [CrossRef]
- So, J. A Study on Economics of Solar and Wind Power Generation with Emphasis on Grid Stability; Korea Energy Economics Institute: Ulsan, Korea, 2014. (In Korean)
Paper not yet in RePEc: Add citation now
Tahir, A.C.; Bañares-Alcántara, R. A knowledge representation model for the optimisation of electricity generation mixes. Appl. Energy 2012, 97, 77–83. [CrossRef]
Thangavelu, S.R.; Khambadkone, A.M.; Karimi, I.A. Long-term optimal energy mix planning towards high energy security and low GHG emission. Appl. Energy 2015, 154, 959–969. [CrossRef]
Train, K.E. Discrete Choice Methods with Simulation, 3rd ed.; Cambridge University Press: New York, NY, USA, 2009.
Van Putten, M.; Lijesen, M.; Ozel, T.; Vink, N.; Wevers, H. Valuing the preferences for micro-generation of renewables by househoulds. Energy 2014, 71, 596–604. [CrossRef]
Van Rijnsoever, F.J.; Van Mossel, A.; Broecks, K.P.F. Public acceptance of energy technologies: The effects of labeling, time, and heterogeneity in a discrete choice experiment. Renew. Sustain. Energy Rev. 2015, 45, 817–829. [CrossRef]
- Vazhayil, J.P.; Balasubramanian, R. Optimization of India’s electricity generation portfolio using intelligent Pareto-search genetic algorithm. J. Electr. Power Energy Syst. 2014, 55, 13–20. [CrossRef]
Paper not yet in RePEc: Add citation now
Verbruggen, A. Renewable and nuclear power: A common future? Energy Policy 2008, 36, 4036–4047. [CrossRef]
Vidal-Amaro, J.J.; Østergaard, P.A.; Sheinbaum-Pardo, C. Optimal energy mix for transitioning from fossil fuels to renewable energy sources: The case of the Mexican electricity system. Appl. Energy 2015, 150, 80–96. [CrossRef]
- Weinzettel, J.; Havránek, M.; Scasny, M. A consumption-based indicator of the external costs of electricity. Ecol. Indic. 2012, 17, 68–76. [CrossRef]
Paper not yet in RePEc: Add citation now
Welsch, H.; Biermann, P. Electricity supply preferences in Europe: Evidence from subjective well-being data. Resour. Energy Econ. 2014, 38, 38–60. [CrossRef]
Willis, K.; Scarpa, R.; Gilroy, R.; Hamza, N. Renewable energy adoption in an ageing population: Heterogeneity in preferences for micro-generation technology adoption. Energy Policy 2011, 39, 6021–6029. [CrossRef]
Yoo, J.; Ready, R.C. Preference heterogeneity for renewable energy technology. Energy Econ. 2014, 42, 101–114. [CrossRef]
- Zhu, Q.; Zhang, Z. On using individual characteristics in the MNL latent class conjoint analysis: An empirical comparison of the nested approach versus the regression approach. Mark. Bull. 2009, 20, 1–12.
Paper not yet in RePEc: Add citation now