- Aalen, O. O. and Johansen, S. (1978). An empirical transition matrix for non-homogeneous Markov chains based on censored observations, Scandinavian Journal of Statistics 5: 141â 150.
Paper not yet in RePEc: Add citation now
Abbring, J. H. and Van den Berg, G. J. (2003). The nonparametric identification of treatment effects in duration models, Econometrica 71(5): 1491â1517.
Abbring, J. H. and Van den Berg, G. J. (2005). Social experiments and instrumental variables with duration outcomes, Technical Report .
- Angrist, J. D., Imbens, G. W. and Rubin, D. B. (1996). Identification of causal effects using instrumental variables, Journal of the American Statistical Association 91(434): 444â455.
Paper not yet in RePEc: Add citation now
Basu, A. and Ghosh, J. (1978). Identifiability of the multinormal and other distributions under competing risks model, Journal of Multivariate Analysis 8(3): 413â429.
Betensky, R. A. and Schoenfeld, D. A. (2001). Nonparametric estimation in a cure model with random cure times, Biometrics 57(1): 282â286.
- Beyhum, J., Florens, J.-P. and Van Keilegom, I. (2021). Nonparametric instrumental regression with right censored duration outcomes, Journal of Business & Economic Statistics, forthcoming .
Paper not yet in RePEc: Add citation now
Bijwaard, G. E. and Ridder, G. (2005). Correcting for selective compliance in a reemployment bonus experiment, Journal of Econometrics 125(1-2): 77â111.
Blanco, G., Chen, X., Flores, C. A. and Flores-Lagunes, A. (2020). Bounds on average and quantile treatment effects on duration outcomes under censoring, selection, and noncompliance, Journal of Business & Economic Statistics 38: 901â920.
Cazals, C., FeÌve, F., Florens, J.-P. and Simar, L. (2016). Nonparametric instrumental variables estimation for efficiency frontier, Journal of Econometrics 190(2): 349â359.
- Chan, K. C. G. (2016). Reader reaction: Instrumental variable additive hazards models with exposure-dependent censoring, Biometrics 72(3): 1003â1005.
Paper not yet in RePEc: Add citation now
Chernozhukov, V. and Hansen, C. (2005). An IV model of quantile treatment effects, Econometrica 73(1): 245â261.
Chernozhukov, V. and Hansen, C. (2006). Instrumental quantile regression inference for structural and treatment effect models, Journal of Econometrics 132(2): 491â525.
Chernozhukov, V., FernaÌndez-Val, I. and Kowalski, A. E. (2015). Quantile regression with censoring and endogeneity, Journal of Econometrics 186(1): 201â221.
- Czado, C. and Van Keilegom, I. (2021). Dependent censoring based on copulas, arXiv preprint, URL= https://arxiv.org/abs/2104.06872 .
Paper not yet in RePEc: Add citation now
De Chaisemartin, C. (2017). Tolerating defiance? local average treatment effects without monotonicity, Quantitative Economics 8(2): 367â396.
Deresa, N. and Van Keilegom, I. (2021). On semiparametric modelling, estimation and inference for survival data subject to dependent censoring, Biometrika, forthcoming .
Dong, Y. and Shen, S. (2018). Testing for rank invariance or similarity in program evaluation, Review of Economics and Statistics 100(1): 78â85.
- Emoto, S. E. and Matthews, P. C. (1990). A Weibull model for dependent censoring, The Annals of Statistics pp. 1556â1577.
Paper not yet in RePEc: Add citation now
FeÌve, F., Florens, J.-P. and Van Keilegom, I. (2018). Estimation of conditional ranks and tests of exogeneity in nonparametric nonseparable models, Journal of Business & Economic Statistics 36(2): 334â345.
Frandsen, B. R. (2015). Treatment effects with censoring and endogeneity, Journal of the American Statistical Association 110(512): 1745â1752.
- Geskus, R. B. (2020). Competing risks: Aims and methods, Handbook of Statistics pp. 249â 87.
Paper not yet in RePEc: Add citation now
Kjaersgaard, M. I. and Parner, E. T. (2016). Instrumental variable method for time-to-event data using a pseudo-observation approach, Biometrics 72(2): 463â472.
Li, J., Fine, J. and Brookhart, A. (2015). Instrumental variable additive hazards models, Biometrics 71(1): 122â130.
- Martinussen, T. and Vansteelandt, S. (2020). Instrumental variables estimation with competing risk data, Biostatistics 21(1): 158â171.
Paper not yet in RePEc: Add citation now
- Richardson, A., Hudgens, M. G., Fine, J. P. and Brookhart, M. A. (2017). Nonparametric binary instrumental variable analysis of competing risks data, Biostatistics 18(1): 48â61.
Paper not yet in RePEc: Add citation now
Rubin, D. B. (2005). Causal inference using potential outcomes: Design, modeling, decisions, Journal of the American Statistical Association 100(469): 322â331.
SantâAnna, P. H. (2016). Program evaluation with right-censored data, arXiv preprint arXiv:1604.02642 .
- Shapiro, S. (1997). Periodic screening for breast cancer: the hip randomized controlled trial, JNCI Monographs 1997(22): 27â30.
Paper not yet in RePEc: Add citation now
- Tchetgen Tchetgen, E. J., Walter, S., Vansteelandt, S., Martinussen, T. and Glymour, M. (2015). Instrumental variable estimation in a survival context, Epidemiology (Cambridge, Mass.) 26(3): 402.
Paper not yet in RePEc: Add citation now
- Tsiatis, A. (1975). A nonidentifiability aspect of the problem of competing risks, Proceedings of the National Academy of Sciences 72(1): 20â22.
Paper not yet in RePEc: Add citation now
- WuÌthrich, K. (2020). A comparison of two quantile models with endogeneity, Journal of Business & Economic Statistics 38(2): 443â456.
Paper not yet in RePEc: Add citation now
- Ying, A., Xu, R. and Murphy, J. (2019). Two-stage residual inclusion for survival data and competing risksâan instrumental variable approach with application to seer-medicare linked data, Statistics in Medicine 38(10): 1775â1801.
Paper not yet in RePEc: Add citation now