Ahn, H. and C.F. Manski (1993): âDistribution Theory for the Analysis of Binary Choice under Uncertainty with Nonparametric Estimation of Expectations,â Journal of Econometrics 56, 291â321.
Athey, S., G. Imbens, and S. Wager (2018): âApproximate Residual Balancing: Debiased Inference of Average Treatment Effects in High Dimensions,â Journal of the Royal Statistical Society, Series B 80, 597â623.
- Avagyan, V. and S. Vansteelandt (2017): âHonest data-adaptive inference for the average treatment effect under model misspecification using penalised bias-reduced double-robust estimation, â https://arxiv.org/abs/1708.03787.
Paper not yet in RePEc: Add citation now
- Belloni, A. and V. Chernozhukov (2013): âLeast Squares After Model Selection in Highdimensional Sparse Models,â Bernoulli 19, 521â547.
Paper not yet in RePEc: Add citation now
Belloni, A., D. Chen, and V. Chernozhukov (2012): âSparse Models and Methods for Optimal Instruments with an Application to Eminent Domain,â Econometrica 80, 2369â429.
- Belloni, A., V. Chernozhukov, and C. Hansen (2014a): âInference on Treatment Effects after Selection among High-Dimensional Controls,â Review of Economic Studies 81, 608â650.
Paper not yet in RePEc: Add citation now
Belloni, A., V. Chernozhukov, K. Kato (2015): âUniform Post-selection Inference for Least Absolute Deviation Regression and Other Z-estimation Problems,â Biometrika 102, 77â94.
- Belloni, A., V. Chernozhukov, L. Wang (2014b): âPivotal Estimation via Square-Root Lasso in Nonparametric Regression,â Annals of Statistics 42, 757â788.
Paper not yet in RePEc: Add citation now
- Bickel, P.J. (1982): âOn Adaptive Estimation,â Annals of Statistics 10, 647â671.
Paper not yet in RePEc: Add citation now
- Bickel, P.J. and Y. Ritov (1988): âEstimating Integrated Squared Density Derivatives: Sharp Best Order of Convergence Estimates,â SankhyaÌ: The Indian Journal of Statistics, Series A 238, 381â393.
Paper not yet in RePEc: Add citation now
- Bickel, P.J., C.A.J. Klaassen, Y. Ritov and J.A. Wellner (1993): Efficient and Adaptive Estimation for Semiparametric Models, Baltimore: Johns Hopkins University Press.
Paper not yet in RePEc: Add citation now
- Bickel, P.J., Y. Ritov, and A. Tsybakov (2009): âSimultaneous Analysis of Lasso and Dantzig Selector,â Annals of Statistics 37, 1705â1732.
Paper not yet in RePEc: Add citation now
- Blundell, R.W. and J.L. Powell (2004): âEndogeneity in Binary Response Models,â Review of Economic Studies 71, 655-679.
Paper not yet in RePEc: Add citation now
- Bradic, J. and M. Kolar (2017): âUniform Inference for High-Dimensional Quantile Regression: Linear Functionals and Regression Rank Scores,â arXiv:1702.06209.
Paper not yet in RePEc: Add citation now
Bradic, J., S. Wager, and Y. Zhu (2019): âSparsity Double Robust Inference of Average Treatment Effects,â https://arxiv.org/pdf/1905.00744.pdf.
- Bradic, J., V. Chernozhukov, W. Newey, and Y. Zhu (2019): âMinimax Semiparametric Learning with Approximate Sparsity,â arXiv.
Paper not yet in RePEc: Add citation now
- Cai, T.T. and Z. Guo (2017): âConfidence Intervals for High-Dimensional Linear Regression: Minimax Rates and Adaptivity,â Annals of Statistics 45, 615-646.
Paper not yet in RePEc: Add citation now
- Candes, E. and T. Tao (2007): âThe Dantzig Selector: Statistical Estimation when p is much Larger than n,â Annals of Statistics 35, 2313â2351.
Paper not yet in RePEc: Add citation now
- Chatterjee, S. and J. Jafarov (2015): âPrediction Error of Cross-Validated Lasso,â arXiv:1502.06291.
Paper not yet in RePEc: Add citation now
- Chen, X. and H. White (1999): âImproved Rates and Asymptotic Normality for Nonparametric Neural Network Estimators,â IEEE Transactions on Information Theory 45, 682-691.
Paper not yet in RePEc: Add citation now
Chernozhkov, V., C. Hansen, and M. Spindler (2015): âValid Post-Selection and PostRegularization Inference: An Elementary, General Approach,â Annual Review of Economics 7, 649â688.
- Chernozhukov, V., D. Chetverikov, and K. Kato (2013a): âGaussian Approximations and Multiplier Bootstrap for Maxima of Sums of High-Dimensional Random Vectors,â Annals of Statistics 41, 2786â2819.
Paper not yet in RePEc: Add citation now
- Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W.K. Newey (2017): âDouble/Debiased/Neyman Machine Learning of Treatment Effects,â American Economic Review 107, 261-65.
Paper not yet in RePEc: Add citation now
- Chernozhukov, V., D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W.K. Newey, J.M. Robins (2018): âDouble/debiased machine learning for treatment and structural parameters,â Econometrics Journal 21, C1-C68.
Paper not yet in RePEc: Add citation now
Chernozhukov, V., J. C. Escanciano, H. Ichimura, W.K. Newey, and J. Robins (2016): âLocally Robust Semiparametric Estimation,â https://arxiv.org/abs/1608.00033v1.
Chernozhukov, V., J. C. Escanciano, H. Ichimura, W.K. Newey, and J. Robins (2020): âLocally Robust Semiparametric Estimation,â https://arxiv.org/abs/1608.00033v4.
- Chernozhukov, V., W.K. Newey, and J. Robins (2018): âDouble/De-Biased Machine Learning Using Regularized Riesz Representers,â https://arxiv.org/pdf/1802.08667v1.pdf.
Paper not yet in RePEc: Add citation now
- Chernozhukov, V., W.K. Newey, and R. Singh (2018): âLearning L2-Continuous Regression Functionals via Regularized Riesz Representers,â https://arxiv.org/pdf/1809.05224v1.pdf.
Paper not yet in RePEc: Add citation now
Chernozhukov, V., W.K. Newey, and R. Singh (2019): âDouble/De-Biased Machine Learning of Global and Local Parameters Using Regularized Riesz Representers,â https://arxiv.org/abs/1802.08667v3 Chernozhukov, V., J.A. Hausman, W.K. Newey (2019): âDemand Analysis with Many Prices,â NBER Working Paper 26424.
- Daubechies, I., M Defrise, and C. De Mol (2004): âAn Iterative Thresholding Algorithm for Linear Inverse Problems with a Sparsity Constraint,â Communications on Pure and Applied Mathematics 57, 1413â57.
Paper not yet in RePEc: Add citation now
- Farbmacher, M., M. Huber, L. LaffeÌrs, H. Langen, M. Spindler (2020): âCausal Mediation Analysis with Double Machine Learning,â https://arxiv.org/abs/2002.12710.
Paper not yet in RePEc: Add citation now
Farrell, M. (2015): âRobust Inference on Average Treatment Effects with Possibly More Covariates than Observations,â Journal of Econometrics 189, 1â23.
- Farrell, M., T. Liang, S. Misra (2020): âDeep Learning for Individual Heterogeneity,â https://arxiv.org/abs/2010.14694.
Paper not yet in RePEc: Add citation now
Farrell, M., T. Liang, S. Misra (2021): âDeep Neural Networks for Estimation and Inference,â Econometrica 89, 181â213.
- Foster, D.J. and V. Srygkanis (2019): âOrthogonal Learning,â https://arxiv.org/abs/1901.09036 Hasminskii, R.Z. and I.A. Ibragimov (1979): âOn the Nonparametric Estimation of Functionals, â in P. Mandl and M. Huskova (eds.), Proceedings of the 2nd Prague Symposium on Asymptotic Statistics, 21-25 August 1978, Amsterdam: North-Holland, pp. 41-51.
Paper not yet in RePEc: Add citation now
- Hirshberg, D.A. and S. Wager (2017): âBalancing Out Regression Error: Efficient Treatment Effect Estimation without Smooth Propensities,â arXiv:1712.00038v1.
Paper not yet in RePEc: Add citation now
- Hirshberg, D.A. and S. Wager (2020): âDebiased Inference of Average Partial Effects in Single-Index Models,â Journal of Business and Economic Statistics 38, 19-24.
Paper not yet in RePEc: Add citation now
- Ichimura and Newey (2021): âThe Influence Function of Semiparametric Estimators,â working paper.
Paper not yet in RePEc: Add citation now
- Imai, K, L. Keele, and D. Tingley (2010): âA General Approach to Causal Mediation Analysis, â Psychological Methods 15, 309 â334.
Paper not yet in RePEc: Add citation now
Imbens, G.W. and W.K. Newey (2009): âIdentification and Estimation of Triangular Simultaneous Equations Models Without Additivity,â Econometrica 77, 1481-1512.
- Jankova, J. and S. Van De Geer (2015): âConfidence Intervals for High-Dimensional Inverse Covariance Estimation,â Electronic Journal of Statistics 90, 1205â1229.
Paper not yet in RePEc: Add citation now
- Jankova, J. and S. Van De Geer (2016a): âSemi-Parametric Efficiency Bounds and Efficient Estimation for High-Dimensional Models,â arXiv:1601.00815.
Paper not yet in RePEc: Add citation now
- Jankova, J. and S. Van De Geer (2016b): âConfidence Regions for High-Dimensional Generalized Linear Models under Sparsity,â arXiv:1610.01353.
Paper not yet in RePEc: Add citation now
- Javanmard, A. and A. Montanari (2014a): âHypothesis Testing in High-Dimensional Regression under the Gaussian Random Design Model: Asymptotic Theory,â IEEE Transactions on Information Theory 60, 6522â6554.
Paper not yet in RePEc: Add citation now
- Javanmard, A. and A. Montanari (2014b): âConfidence Intervals and Hypothesis Testing for High-Dimensional Regression,â Journal of Machine Learning Research 15: 2869â2909.
Paper not yet in RePEc: Add citation now
- Javanmard, A. and A. Montanari (2015): âDe-Biasing the Lasso: Optimal Sample Size for Gaussian Designs,â arXiv:1508.02757.
Paper not yet in RePEc: Add citation now
- Jing, B.Y., Q.M. Shao, and Q. Wang (2003): âSelf-Normalized CrameÌr-Type Large Deviations for Independent Random Variables,â Annals of Probability 31, 2167â2215.
Paper not yet in RePEc: Add citation now
- Kennedy, E.H. (2020): âOptimal Doubly Robust Estimation of Heterogeneous Causal Effects, â https://arxiv.org/pdf/2004.14497.pdf.
Paper not yet in RePEc: Add citation now
- Klaassen, C.A.J. (1987): âConsistent Estimation of the Influence Function of Locally Asymptotically Linear Estimators,â Annals ot Statistics 15, 1548-1562.
Paper not yet in RePEc: Add citation now
- Leeb H., and B.M. PoÌtscher (2008b): âSparse Estimators and the Oracle Property, or the Return of Hodgesâ Estimator,â Journal of Econometrics 142, 201â211.
Paper not yet in RePEc: Add citation now
- Leeb, H., and B.M. PoÌtscher (2008a): âRecent Developments in Model Selection and Related Areas,â Econometric Theory 24, 319â22.
Paper not yet in RePEc: Add citation now
Luedtke, A. R. and M. J. van der Laan (2016): âOptimal Individualized Treatments in Resource-limited Settings,â The International Journal of Biostatistics 12, 283-303.
- Luo, Ye and M. Spindler (2016): âHigh-Dimenstional L2 Boosting: Rate of Convergence,â https://arxiv.org/pdf/1602.08927.pdf.
Paper not yet in RePEc: Add citation now
- Nelder, J. and R. Wedderburn (1972): âGeneralized Linear Models,â Journal of the Royal Statistical Society. Series A 135, 370â384.
Paper not yet in RePEc: Add citation now
Newey, W.K. (1994): âThe Asymptotic Variance of Semiparametric Estimators,â Econometrica 62, 1349â1382.
Newey, W.K. and J.M. Robins (2017): âCross Fitting and Fast Remainder Rates for Semiparametric Estimation,â arXiv:1801.09138.
Newey, W.K., F. Hsieh, and J.M. Robins (1998): âUndersmoothing and Bias Corrected Functional Estimation,â MIT Dept. of Economics working paper 98-17.
Newey, W.K., F. Hsieh, and J.M. Robins (2004): âTwicing Kernels and a Small Bias Property of Semiparametric Estimators,â Econometrica 72, 947â962.
- Neykov, M., Y. Ning, J.S. Liu, and H. Liu (2015): âA Unified Theory of Confidence Regions and Testing for High Dimensional Estimating Equations,â arXiv:1510.08986.
Paper not yet in RePEc: Add citation now
- Ning, Y. and H. Liu (2017): âA General Theory of Hypothesis Tests and Confidence Regions for Sparse High Dimensional Models,â Annals of Statistics 45, 158-195.
Paper not yet in RePEc: Add citation now
- Ren, Z., T. Sun, C.H. Zhang, and H. Zhou (2015): âAsymptotic Normality and Optimalities in Estimation of Large Gaussian Graphical Models,â Annals of Statistics 43, 991â1026.
Paper not yet in RePEc: Add citation now
- Robins, J., P. Zhang, R. Ayyagari, R. Logan, E. Tchetgen, L. Li, A. Lumley, and A. van der Vaart (2013): âNew Statistical Approaches to Semiparametric Regression with Application to Air Pollution Research,â Research Report Health E Inst.
Paper not yet in RePEc: Add citation now
- Robins, J.M. and A. Rotnitzky (1995): âSemiparametric Efficiency in Multivariate Regression Models with Missing Data,â Journal of the American Statistical Association 90 (429): 122â129.
Paper not yet in RePEc: Add citation now
- Robins, J.M., A. Rotnitzky, and L.P. Zhao (1995): âAnalysis of Semiparametric Regression Models for Repeated Outcomes in the Presence of Missing Data,â Journal of the American Statistical Association 90, 106â121.
Paper not yet in RePEc: Add citation now
- Rosenbaum, P.R. and D. B. Rubin (1983): âThe Central Role of the Propensity Score in Observational Studies for Causal Effects,â Biometrika 70: 41â55.
Paper not yet in RePEc: Add citation now
- RothenhaÌusler, D. and B. Yu (2019): âIncremental Causal Effects,â arXiv:1907.13258.
Paper not yet in RePEc: Add citation now
- Rudelson, M. and S. Zhou (2013): âReconstruction From Anisotropic Random Measurements, â IEEE Transactions on Informating Theory 59, 3434â3447.
Paper not yet in RePEc: Add citation now
- Schick, A. (1986): âOn Asymptotically Efficient Estimation in Semiparametric Models,â Annals of Statistics 14, 1139â1151.
Paper not yet in RePEc: Add citation now
- Schmidt-Hieber, J. (2020): âNonparametric Regression Using Deep Neural Networks with RELU Activation Function,â The Annals of Statistics 48, 1875â1897.
Paper not yet in RePEc: Add citation now
- Singh, R. and L. Sun (2019): âDe-biased Machine Learning for Compliers,â arXiv:1909.05244.
Paper not yet in RePEc: Add citation now
- Singh, R., L. Xu, and A. Gretton (2020): âKernel Methods for Nonparametric Treatment Effects,â draft.
Paper not yet in RePEc: Add citation now
- Stock, J.H. (1989): âNonparametric Policy Analysis,â Journal of the American Statistical Association 84, 567â575.
Paper not yet in RePEc: Add citation now
- Syrgkanis, V., and M. Zampetakis (2020): âEstimation and Inference with Trees and Forests in High Dimensions,â https://arxiv.org/abs/2007.03210.
Paper not yet in RePEc: Add citation now
- Tchetgen Tchetgen, E.J. and I. Shipster (2012): âSemiparametric Theory for Causal Mediation Analysis: Efficiency Bounds, Multiple Robustness and Sensitivity Analysis,â The Annals of Statistics 40, 1816-1845.
Paper not yet in RePEc: Add citation now
- Toth, B. and M. J. van der Laan (2016), âTMLE for Marginal Structural Models Based On An Instrument,â U.C. Berkeley Division of Biostatistics Working Paper Series, Working Paper 350.
Paper not yet in RePEc: Add citation now
Tseng, P. (2001): âConvergence of a Block Coordinate Descent Method for Nondifferentiable Minimization,â Journal of Optimization Theory and Applications 109, 475â94.
- Van De Geer, S., P. BuÌhlmann, Y. Ritov, and R. Dezeure (2014): âOn Asymptotically Optimal Confidence Regions and Tests for High-Dimensional Models,â Annals of Statistics, 42: 1166â1202.
Paper not yet in RePEc: Add citation now
Van der Laan, M. and D. Rubin (2006): âTargeted Maximum Likelihood Learning,â International Journal of Biostatistics 2.
- Van der Laan, M. J. and S. Rose (2011): Targeted Learning: Causal Inference for Observational and Experimental Data, Springer.
Paper not yet in RePEc: Add citation now
- Van der Vaart, A.W. (1991): âOn Differentiable Functionals,â Annals of Statistics, 19: 178â 204.
Paper not yet in RePEc: Add citation now
- Van der Vaart, A.W. (1998): Asymptotic Statistics. New York: Cambridge University Press.
Paper not yet in RePEc: Add citation now
Vermeulen, K. and S. Vansteelandt (2015): âBias-Reduced Doubly Robust Estimation,â Journal of the American Statistical Association 110, 1024-1036.
- Vershynin, R. (2018): High-Dimensional Probability, New York: Cambridge University Press.
Paper not yet in RePEc: Add citation now
White, H. (1982): âMaximum Likelihood Estimation of Misspecified Models,â Econometrica 50, 1-25.
- Wooldridge, J.M. (2002): Econometric Analysis of Cross-Section and Panel Data, Cambridge, MIT Press.
Paper not yet in RePEc: Add citation now
Wooldridge, J.M. (2019): âCorrelated Random Effects Models with Unbalanced Panels,â Journal of Econometrics 211, 137â50.
Wooldridge, J.M. and Y. Zhu (2020): âInference in Approximately Sparse Correlated Random Effects Probit Models With Panel Data,â Journal of Business and Economic Statistics 38, 1-18.
Yarotsky, D. (2017): âError Bounds for Approximations With Deep ReLU Networks,â Neural Networks 94, 103â114. [184,189-191,206,208] Yarotsky, D. (2018): âOptimal approximation of continuous functions by very deep ReLU networks,â in 31st Annual Conference on Learning Theory 639â649. [184,189,192,206] Zhang, C. and S. Zhang (2014): âConfidence Intervals for Low-Dimensional Parameters in High-Dimensional Linear Models,â Journal of the Royal Statistical Society, Series B 76, 217â 242.
- Zheng, W., Z. Luo, and M. J. van der Laan (2016), âMarginal Structural Models with Counterfactual Effect Modifiers,â U.C. Berkeley Division of Biostatistics Working Paper Series, Working Paper 348.
Paper not yet in RePEc: Add citation now
- Zhu, Y. and J. Bradic (2017a): âLinear Hypothesis Testing in Dense High-Dimensional Linear Models,â Journal of the American Statistical Association 112.
Paper not yet in RePEc: Add citation now
- Zhu, Y. and J. Bradic (2017b): âBreaking the Curse of Dimensionality in Regression,â arXiv: 1708.00430.
Paper not yet in RePEc: Add citation now
Zubizarreta, J.R. (2015): âStable Weights that Balance Covariates for Estimation with Incomplete Outcome Data,â Journal of the American Statistical Association 90 (429): 122â129.