Adebiyi, A.A., Adewumi, A.O., Ayo, C.K., 2014. Comparison of arima and artificial neural networks models for stock price prediction. Journal of Applied Mathematics 2014.
- Agrawal, J., Chourasia, V., Mittra, A., 2013. State-of-the-art in stock prediction techniques. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 2, 1360– 1366.
Paper not yet in RePEc: Add citation now
- Bao, W., Yue, J., Rao, Y., 2017. A deep learning framework for fiRaehyun Kim et al.: Preprint submitted to Elsevier Page 12 of HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction nancial time series using stacked autoencoders and long-short term memory. PloS one 12, e0180944.
Paper not yet in RePEc: Add citation now
- Bollen, J., Mao, H., Zeng, X., 2011. Twitter mood predicts the stock market. Journal of computational science 2, 1–8.
Paper not yet in RePEc: Add citation now
Bollerslev, T., Marrone, J., Xu, L., Zhou, H., 2014. Stock return predictability and variance risk premia: statistical inference and international evidence. Journal of Financial and Quantitative Analysis 49, 633–661.
- Chen, J., Ma, T., Xiao, C., 2018a. FastGCN: Fast learning with graph convolutional networks via importance sampling, in: International Conference on Learning Representations.
Paper not yet in RePEc: Add citation now
- Chen, Y., Wei, Z., Huang, X., 2018b. Incorporating corporation relationship via graph convolutional neural networks for stock price prediction, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, ACM. pp. 1655–1658.
Paper not yet in RePEc: Add citation now
- Dechow, P.M., Hutton, A.P., Meulbroek, L., Sloan, R.G., 2001. Shortsellers, fundamental analysis, and stock returns. Journal of Financial Economics 61, 77–106.
Paper not yet in RePEc: Add citation now
- Dempster, M.A., Payne, T.W., Romahi, Y., Thompson, G.W., 2001. Computational learning techniques for intraday fx trading using popular technical indicators. IEEE Transactions on neural networks 12, 744–754.
Paper not yet in RePEc: Add citation now
- Ding, X., Zhang, Y., Liu, T., Duan, J., 2015. Deep learning for eventdriven stock prediction, in: Twenty-Fourth International Joint Conference on Artificial Intelligence.
Paper not yet in RePEc: Add citation now
- Ding, X., Zhang, Y., Liu, T., Duan, J., 2016. Knowledge-driven event embedding for stock prediction, in: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2133–2142.
Paper not yet in RePEc: Add citation now
- Dong, Y., Chawla, N.V., Swami, A., 2017. metapath2vec: Scalable representation learning for heterogeneous networks, in: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, ACM. pp. 135–144.
Paper not yet in RePEc: Add citation now
Feng, F., He, X., Wang, X., Luo, C., Liu, Y., Chua, T.S., 2019. Temporal relational ranking for stock prediction. ACM Transactions on Information Systems (TOIS) 37, 27.
Fischer, T., Krauss, C., 2018. Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research 270, 654–669.
- Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E., 2017. Neural message passing for quantum chemistry, in: Proceedings of the 34th International Conference on Machine LearningVolume 70, JMLR. org. pp. 1263–1272.
Paper not yet in RePEc: Add citation now
- Hamilton, W., Ying, Z., Leskovec, J., 2017. Inductive representation learning on large graphs, in: Advances in Neural Information Processing Systems, pp. 1024–1034.
Paper not yet in RePEc: Add citation now
- Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 .
Paper not yet in RePEc: Add citation now
- Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems, pp. 1097–1105.
Paper not yet in RePEc: Add citation now
- Lee, J., Lee, I., Kang, J., 2019. Self-attention graph pooling. arXiv preprint arXiv:1904.08082 .
Paper not yet in RePEc: Add citation now
- Li, X., Xie, H., Chen, L., Wang, J., Deng, X., 2014. News impact on stock price return via sentiment analysis. Knowledge-Based Systems 69, 14–23.
Paper not yet in RePEc: Add citation now
Malkiel, B.G., 2003. The efficient market hypothesis and its critics. Journal of economic perspectives 17, 59–82.
- Patel, J., Shah, S., Thakkar, P., Kotecha, K., 2015. Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Systems with Applications 42, 259–268.
Paper not yet in RePEc: Add citation now
Phan, D.H.B., Sharma, S.S., Narayan, P.K., 2015. Stock return forecasting: some new evidence. International Review of Financial Analysis 40, 38–51.
- Rather, A.M., Agarwal, A., Sastry, V., 2015. Recurrent neural network and a hybrid model for prediction of stock returns. Expert Systems with Applications 42, 3234–3241.
Paper not yet in RePEc: Add citation now
- VeliÄković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 .
Paper not yet in RePEc: Add citation now
- VrandeÄić, D., Krötzsch, M., 2014. Wikidata: a free collaborative knowledge base .
Paper not yet in RePEc: Add citation now
- Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J., 2018a. Graph convolutional neural networks for webscale recommender systems, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983.
Paper not yet in RePEc: Add citation now
- Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J., 2018b. Hierarchical graph representation learning with differentiable pooling, in: Advances in Neural Information Processing Systems, pp. 4800–4810.
Paper not yet in RePEc: Add citation now