[go: up one dir, main page]

create a website
HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction. (2019). Kang, Jaewoo ; Kim, Jinkyu ; Lee, Sanghoon ; Jeong, Minbyul ; Ho, Chan.
In: Papers.
RePEc:arx:papers:1908.07999.

Full description at Econpapers || Download paper

Cited: 17

Citations received by this document

Cites: 28

References cited by this document

Cocites: 37

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. From Factor Models to Deep Learning: Machine Learning in Reshaping Empirical Asset Pricing. (2024). Wang, Guiling ; Uddin, Ajim ; Gu, Jingyi ; Goswami, Bhaskar ; Ye, Junyi.
    In: Papers.
    RePEc:arx:papers:2403.06779.

    Full description at Econpapers || Download paper

  2. Ploutos: Towards interpretable stock movement prediction with financial large language model. (2024). Zhang, QI ; Gong, Ming ; Wu, Ning ; Li, Jun ; Tong, Hanshuang.
    In: Papers.
    RePEc:arx:papers:2403.00782.

    Full description at Econpapers || Download paper

  3. Media Moments and Corporate Connections: A Deep Learning Approach to Stock Movement Classification. (2023). Sahagun, Matthew ; Sanborn, Luke.
    In: Papers.
    RePEc:arx:papers:2309.06559.

    Full description at Econpapers || Download paper

  4. Temporal and Heterogeneous Graph Neural Network for Financial Time Series Prediction. (2023). Zhang, Ying ; Shang, Chencheng ; Cheng, Dawei ; Xiang, Sheng ; Liang, Yuqi.
    In: Papers.
    RePEc:arx:papers:2305.08740.

    Full description at Econpapers || Download paper

  5. Stock Market Prediction via Deep Learning Techniques: A Survey. (2023). Liu, Lingqiao ; Abbasnejad, Ehsan ; Yan, Qingsen ; Cao, Haiyao ; Jiao, Yang ; Zhao, Qingying ; Zou, Jinan ; Shi, Javen Qinfeng.
    In: Papers.
    RePEc:arx:papers:2212.12717.

    Full description at Econpapers || Download paper

  6. Efficient Integration of Multi-Order Dynamics and Internal Dynamics in Stock Movement Prediction. (2022). Aberer, Karl ; Hung, Quoc Viet ; Weidlich, Matthias ; le Nguyen, Phi ; Huynh, Thanh Trung.
    In: Papers.
    RePEc:arx:papers:2211.07400.

    Full description at Econpapers || Download paper

  7. GCNET: graph-based prediction of stock price movement using graph convolutional network. (2022). Haratizadeh, Saman ; Jafari, Alireza.
    In: Papers.
    RePEc:arx:papers:2203.11091.

    Full description at Econpapers || Download paper

  8. .

    Full description at Econpapers || Download paper

  9. A Multilayer Feedforward Perceptron Model in Neural Networks for Predicting Stock Market Short-term Trends. (2021). Durrani, Tariq S ; Namdari, Alireza.
    In: SN Operations Research Forum.
    RePEc:spr:snopef:v:2:y:2021:i:3:d:10.1007_s43069-021-00071-2.

    Full description at Econpapers || Download paper

  10. HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information. (2021). Wang, Lewen ; Liu, Weiqing ; Xu, Wentao ; Yin, Jian ; Bian, Jiang ; Xia, Yingce.
    In: Papers.
    RePEc:arx:papers:2110.13716.

    Full description at Econpapers || Download paper

  11. Graph-Based Learning for Stock Movement Prediction with Textual and Relational Data. (2021). Robert, Christian-Yann ; Chen, Qinkai.
    In: Papers.
    RePEc:arx:papers:2107.10941.

    Full description at Econpapers || Download paper

  12. REST: Relational Event-driven Stock Trend Forecasting. (2021). Bian, Jiang ; Xu, Wentao ; Liu, Weiqing ; Yin, Jian.
    In: Papers.
    RePEc:arx:papers:2102.07372.

    Full description at Econpapers || Download paper

  13. Event-Driven Learning of Systematic Behaviours in Stock Markets. (2020). Wu, Xianchao.
    In: Papers.
    RePEc:arx:papers:2010.15586.

    Full description at Econpapers || Download paper

  14. Exploring Graph Neural Networks for Stock Market Predictions with Rolling Window Analysis. (2019). Takahashi, Toshihiro ; Suzumura, Toyotaro ; Matsunaga, Daiki.
    In: Papers.
    RePEc:arx:papers:1909.10660.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Adebiyi, A.A., Adewumi, A.O., Ayo, C.K., 2014. Comparison of arima and artificial neural networks models for stock price prediction. Journal of Applied Mathematics 2014.

  2. Agrawal, J., Chourasia, V., Mittra, A., 2013. State-of-the-art in stock prediction techniques. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering 2, 1360– 1366.
    Paper not yet in RePEc: Add citation now
  3. Bao, W., Yue, J., Rao, Y., 2017. A deep learning framework for fiRaehyun Kim et al.: Preprint submitted to Elsevier Page 12 of HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction nancial time series using stacked autoencoders and long-short term memory. PloS one 12, e0180944.
    Paper not yet in RePEc: Add citation now
  4. Bollen, J., Mao, H., Zeng, X., 2011. Twitter mood predicts the stock market. Journal of computational science 2, 1–8.
    Paper not yet in RePEc: Add citation now
  5. Bollerslev, T., Marrone, J., Xu, L., Zhou, H., 2014. Stock return predictability and variance risk premia: statistical inference and international evidence. Journal of Financial and Quantitative Analysis 49, 633–661.

  6. Chen, J., Ma, T., Xiao, C., 2018a. FastGCN: Fast learning with graph convolutional networks via importance sampling, in: International Conference on Learning Representations.
    Paper not yet in RePEc: Add citation now
  7. Chen, Y., Wei, Z., Huang, X., 2018b. Incorporating corporation relationship via graph convolutional neural networks for stock price prediction, in: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, ACM. pp. 1655–1658.
    Paper not yet in RePEc: Add citation now
  8. Dechow, P.M., Hutton, A.P., Meulbroek, L., Sloan, R.G., 2001. Shortsellers, fundamental analysis, and stock returns. Journal of Financial Economics 61, 77–106.
    Paper not yet in RePEc: Add citation now
  9. Dempster, M.A., Payne, T.W., Romahi, Y., Thompson, G.W., 2001. Computational learning techniques for intraday fx trading using popular technical indicators. IEEE Transactions on neural networks 12, 744–754.
    Paper not yet in RePEc: Add citation now
  10. Ding, X., Zhang, Y., Liu, T., Duan, J., 2015. Deep learning for eventdriven stock prediction, in: Twenty-Fourth International Joint Conference on Artificial Intelligence.
    Paper not yet in RePEc: Add citation now
  11. Ding, X., Zhang, Y., Liu, T., Duan, J., 2016. Knowledge-driven event embedding for stock prediction, in: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 2133–2142.
    Paper not yet in RePEc: Add citation now
  12. Dong, Y., Chawla, N.V., Swami, A., 2017. metapath2vec: Scalable representation learning for heterogeneous networks, in: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, ACM. pp. 135–144.
    Paper not yet in RePEc: Add citation now
  13. Feng, F., He, X., Wang, X., Luo, C., Liu, Y., Chua, T.S., 2019. Temporal relational ranking for stock prediction. ACM Transactions on Information Systems (TOIS) 37, 27.

  14. Fischer, T., Krauss, C., 2018. Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research 270, 654–669.

  15. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E., 2017. Neural message passing for quantum chemistry, in: Proceedings of the 34th International Conference on Machine LearningVolume 70, JMLR. org. pp. 1263–1272.
    Paper not yet in RePEc: Add citation now
  16. Hamilton, W., Ying, Z., Leskovec, J., 2017. Inductive representation learning on large graphs, in: Advances in Neural Information Processing Systems, pp. 1024–1034.
    Paper not yet in RePEc: Add citation now
  17. Kipf, T.N., Welling, M., 2016. Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 .
    Paper not yet in RePEc: Add citation now
  18. Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional neural networks, in: Advances in neural information processing systems, pp. 1097–1105.
    Paper not yet in RePEc: Add citation now
  19. Lee, J., Lee, I., Kang, J., 2019. Self-attention graph pooling. arXiv preprint arXiv:1904.08082 .
    Paper not yet in RePEc: Add citation now
  20. Li, X., Xie, H., Chen, L., Wang, J., Deng, X., 2014. News impact on stock price return via sentiment analysis. Knowledge-Based Systems 69, 14–23.
    Paper not yet in RePEc: Add citation now
  21. Malkiel, B.G., 2003. The efficient market hypothesis and its critics. Journal of economic perspectives 17, 59–82.

  22. Patel, J., Shah, S., Thakkar, P., Kotecha, K., 2015. Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques. Expert Systems with Applications 42, 259–268.
    Paper not yet in RePEc: Add citation now
  23. Phan, D.H.B., Sharma, S.S., Narayan, P.K., 2015. Stock return forecasting: some new evidence. International Review of Financial Analysis 40, 38–51.

  24. Rather, A.M., Agarwal, A., Sastry, V., 2015. Recurrent neural network and a hybrid model for prediction of stock returns. Expert Systems with Applications 42, 3234–3241.
    Paper not yet in RePEc: Add citation now
  25. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y., 2017. Graph attention networks. arXiv preprint arXiv:1710.10903 .
    Paper not yet in RePEc: Add citation now
  26. Vrandečić, D., Krötzsch, M., 2014. Wikidata: a free collaborative knowledge base .
    Paper not yet in RePEc: Add citation now
  27. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J., 2018a. Graph convolutional neural networks for webscale recommender systems, in: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 974–983.
    Paper not yet in RePEc: Add citation now
  28. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., Leskovec, J., 2018b. Hierarchical graph representation learning with differentiable pooling, in: Advances in Neural Information Processing Systems, pp. 4800–4810.
    Paper not yet in RePEc: Add citation now

Cocites

Documents in RePEc which have cited the same bibliography

  1. Modeling inflation rate factors on present consumption price index in Ethiopia: threshold autoregressive models approach. (2023). Kebede, Belete ; Temesgen, Aboma ; Abebe, Alebachew.
    In: Future Business Journal.
    RePEc:spr:futbus:v:9:y:2023:i:1:d:10.1186_s43093-023-00241-0.

    Full description at Econpapers || Download paper

  2. Forecasting returns volatility of cryptocurrency by applying various deep learning algorithms. (2023). Shaikh, Parvez Ahmed ; Khan, Faridoon.
    In: Future Business Journal.
    RePEc:spr:futbus:v:9:y:2023:i:1:d:10.1186_s43093-023-00200-9.

    Full description at Econpapers || Download paper

  3. Predict Stock Prices Using Supervised Learning Algorithms and Particle Swarm Optimization Algorithm. (2023). Hosseini, Soodeh ; Bazrkar, Mohammad Javad.
    In: Computational Economics.
    RePEc:kap:compec:v:62:y:2023:i:1:d:10.1007_s10614-022-10273-3.

    Full description at Econpapers || Download paper

  4. Univariate Forecasting for REITs with Deep Learning: A Comparative Analysis with an ARIMA Model. (2023). Song, Han-Suck ; Axelsson, Birger.
    In: Working Paper Series.
    RePEc:hhs:kthrec:2023_010.

    Full description at Econpapers || Download paper

  5. Forecasting oil, coal, and natural gas prices in the pre-and post-COVID scenarios: Contextual evidence from India using time series forecasting tools. (2023). Abduvaxitovna, Shamansurova Zilola ; Pachiyappan, Duraisamy ; Manigandan, Palanisamy ; Murshed, Muntasir ; Alam, Md Shabbir.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:81:y:2023:i:c:s0301420723000508.

    Full description at Econpapers || Download paper

  6. Data vs. information: Using clustering techniques to enhance stock returns forecasting. (2023). Fernandez Bariviera, Aurelio ; Quiroga, Facundo Manuel ; Saenz, Javier Vasquez.
    In: International Review of Financial Analysis.
    RePEc:eee:finana:v:88:y:2023:i:c:s1057521923001734.

    Full description at Econpapers || Download paper

  7. The optimal forecast model for consumer price index of Puntland State, Somalia. (2022). Mohamed, Jama ; Ali, Abdullahi Osman.
    In: Quality & Quantity: International Journal of Methodology.
    RePEc:spr:qualqt:v:56:y:2022:i:6:d:10.1007_s11135-022-01328-6.

    Full description at Econpapers || Download paper

  8. Artificial Neural Network for Modeling the Economic Performance: A New Perspective. (2022). Mohamed, Ahmed Ramzy.
    In: Journal of Quantitative Economics.
    RePEc:spr:jqecon:v:20:y:2022:i:3:d:10.1007_s40953-022-00297-9.

    Full description at Econpapers || Download paper

  9. Swarm Intelligence Based Hybrid Neural Network Approach for Stock Price Forecasting. (2022). Singh, Uday Pratap ; Kumar, Gourav ; Jain, Sanjeev.
    In: Computational Economics.
    RePEc:kap:compec:v:60:y:2022:i:3:d:10.1007_s10614-021-10176-9.

    Full description at Econpapers || Download paper

  10. Towards Crafting Optimal Functional Link Artificial Neural Networks with Rao Algorithms for Stock Closing Prices Prediction. (2022). Sahoo, Biswajit ; Das, Subhranginee ; Nayak, Sarat Chandra.
    In: Computational Economics.
    RePEc:kap:compec:v:60:y:2022:i:1:d:10.1007_s10614-021-10130-9.

    Full description at Econpapers || Download paper

  11. Development of Intelligent Stock Trading System Using Pattern Independent Predictor and Turning Point Matrix. (2022). Lee, Jongwoo ; Song, Yoojeong.
    In: Computational Economics.
    RePEc:kap:compec:v:59:y:2022:i:1:d:10.1007_s10614-020-10066-6.

    Full description at Econpapers || Download paper

  12. Bimodal Characteristic Returns and Predictability Enhancement via Machine Learning. (2022). Han, Chulwoo.
    In: Management Science.
    RePEc:inm:ormnsc:v:68:y:2022:i:10:p:7701-7741.

    Full description at Econpapers || Download paper

  13. Dynamic and Context-Dependent Stock Price Prediction Using Attention Modules and News Sentiment. (2022). Koenigstein, Nicole.
    In: Papers.
    RePEc:arx:papers:2205.01639.

    Full description at Econpapers || Download paper

  14. Analysis of Romanian Air Quality using Machine Learning Techniques. (2022). Niculae, Andreea-Mihaela.
    In: Database Systems Journal.
    RePEc:aes:dbjour:v:13:y:2022:i:1:p:1-10.

    Full description at Econpapers || Download paper

  15. .

    Full description at Econpapers || Download paper

  16. The Prediction of Gold Futures Prices at the Shanghai Futures Exchange Based on the MEEMD-CS-Elman Model. (2021). Li, Wen ; Ma, Ying ; Wang, Xiaowen.
    In: SAGE Open.
    RePEc:sae:sagope:v:11:y:2021:i:1:p:21582440211001866.

    Full description at Econpapers || Download paper

  17. Accuracies of Model Risks in Finance using Machine Learning. (2021). SADEFO, Jules ; Fadugba, Jeremiah ; Osei, Salomey ; Kamdem, Jules Sadefo ; Mpinda, Berthine Nyunga.
    In: Working Papers.
    RePEc:hal:wpaper:hal-03191437.

    Full description at Econpapers || Download paper

  18. Using a Genetic Algorithm to Build a Volume Weighted Average Price Model in a Stock Market. (2021). Lee, Hee Soo ; Jeong, Seung Hwan ; Oh, Kyongjoo ; Nam, Hyun.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:3:p:1011-:d:483338.

    Full description at Econpapers || Download paper

  19. Application of Artificial Intelligence in Stock Market Forecasting: A Critique, Review, and Research Agenda. (2021). Sharma, Gagan ; Chopra, Ritika.
    In: JRFM.
    RePEc:gam:jjrfmx:v:14:y:2021:i:11:p:526-:d:672223.

    Full description at Econpapers || Download paper

  20. A Comparative Analysis of the ARIMA and LSTM Predictive Models and Their Effectiveness for Predicting Wind Speed. (2021). Merabet, Adel ; Elsaraiti, Meftah.
    In: Energies.
    RePEc:gam:jeners:v:14:y:2021:i:20:p:6782-:d:658694.

    Full description at Econpapers || Download paper

  21. Climate Finance: Mapping Air Pollution and Finance Market in Time Series. (2021). Fang, Zheng ; Xie, Jianying ; Wang, Sheng ; Peng, Ruiming.
    In: Econometrics.
    RePEc:gam:jecnmx:v:9:y:2021:i:4:p:43-:d:694969.

    Full description at Econpapers || Download paper

  22. Study on early warnings of strategic risk during the process of firms’ sustainable innovation based on an optimized genetic BP neural networks model: Evidence from Chinese manufacturing firms. (2021). Deng, Zhiqing ; Yang, Meng ; Mu, Chang ; Duan, Yunlong ; Fang, Qifeng ; Zhou, LI ; Chin, Tachia.
    In: International Journal of Production Economics.
    RePEc:eee:proeco:v:242:y:2021:i:c:s0925527321002693.

    Full description at Econpapers || Download paper

  23. Forecasting stock index price using the CEEMDAN-LSTM model. (2021). Yan, Yan ; Lin, YU ; Ma, Feng ; Liao, Ying ; Xu, Jiali.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:57:y:2021:i:c:s1062940821000553.

    Full description at Econpapers || Download paper

  24. Temporal-Relational Hypergraph Tri-Attention Networks for Stock Trend Prediction. (2021). Yin, Yilong ; Wang, Meng ; Nie, Xiushan ; Zhang, Chunyun ; Du, Juan ; Li, Xiaojie ; Cui, Chaoran.
    In: Papers.
    RePEc:arx:papers:2107.14033.

    Full description at Econpapers || Download paper

  25. Design and Analysis of Robust Deep Learning Models for Stock Price Prediction. (2021). Mehtab, Sidra ; Sen, Jaydip.
    In: Papers.
    RePEc:arx:papers:2106.09664.

    Full description at Econpapers || Download paper

  26. The industrial asymmetry of the stock price prediction with investor sentiment: Based on the comparison of predictive effects with SVR. (2020). Liao, Zhewen ; Lai, Lin ; Sun, YI ; Guo, Kun ; Jin, Zhenni.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:39:y:2020:i:7:p:1166-1178.

    Full description at Econpapers || Download paper

  27. Forecasting Monthly Prices of Gold Using Artificial Neural Network. (2020). Henry, Ukomah ; Bright, Oiorha ; Okezie, Uche-Ikonne ; Maxwell, Obubu ; Chukwudike, Nwokike.
    In: Journal of Statistical and Econometric Methods.
    RePEc:spt:stecon:v:9:y:2020:i:3:f:9_3_2.

    Full description at Econpapers || Download paper

  28. Predictive power of ARIMA models in forecasting equity returns: a sliding window method. (2020). Hu, Ruizhi ; Reichgelt, Han ; Guo, Xiaomin ; Dong, Huijian .
    In: Journal of Asset Management.
    RePEc:pal:assmgt:v:21:y:2020:i:6:d:10.1057_s41260-020-00184-z.

    Full description at Econpapers || Download paper

  29. Comparing Weighted Markov Chain and Auto-Regressive Integrated Moving Average in the Prediction of Under-5 Mortality Annual Closing Rates in Nigeria. (2020). Obasohan, Phillips Edomwonyi.
    In: International Journal of Statistics and Probability.
    RePEc:ibn:ijspjl:v:9:y:2020:i:3:p:13.

    Full description at Econpapers || Download paper

  30. An R-based forecasting approach for efficient demand response strategies in autonomous micro-grids. (2019). .
    In: Energy & Environment.
    RePEc:sae:engenv:v:30:y:2019:i:1:p:63-80.

    Full description at Econpapers || Download paper

  31. HATS: A Hierarchical Graph Attention Network for Stock Movement Prediction. (2019). Kang, Jaewoo ; Kim, Jinkyu ; Lee, Sanghoon ; Jeong, Minbyul ; Ho, Chan.
    In: Papers.
    RePEc:arx:papers:1908.07999.

    Full description at Econpapers || Download paper

  32. Enhancing Stock Movement Prediction with Adversarial Training. (2019). Chua, Tat-Seng ; Sun, Maosong ; Ding, JI ; He, Xiangnan ; Chen, Huimin ; Feng, Fuli.
    In: Papers.
    RePEc:arx:papers:1810.09936.

    Full description at Econpapers || Download paper

  33. Temporal Relational Ranking for Stock Prediction. (2019). Chua, Tat-Seng ; Liu, Yiqun ; Luo, Cheng ; Wang, Xiang ; He, Xiangnan ; Feng, Fuli.
    In: Papers.
    RePEc:arx:papers:1809.09441.

    Full description at Econpapers || Download paper

  34. Adaptive Market Hypothesis and Artificial Neural Networks: Evidence from Pakistan. (2019). Jadoon, Imran Abbas ; Ayub, Usman ; Kayani, Sehrish.
    In: Global Regional Review.
    RePEc:aaw:grrjrn:v:4:y:2019:i:2:p:190-203.

    Full description at Econpapers || Download paper

  35. A Thick ANN Model for Forecasting Inflation. (2018). Iqbal, Javed ; Hanif, Muhammad ; Mughal, Khurrum S.
    In: SBP Working Paper Series.
    RePEc:sbp:wpaper:99.

    Full description at Econpapers || Download paper

  36. Leveraging Financial News for Stock Trend Prediction with Attention-Based Recurrent Neural Network. (2018). Liu, Huicheng.
    In: Papers.
    RePEc:arx:papers:1811.06173.

    Full description at Econpapers || Download paper

  37. Evaluating the Performance of Inflation Forecasting Models of Pakistan. (2015). Hanif, Muhammad ; Malik, Muhammad Jahanzeb.
    In: SBP Research Bulletin.
    RePEc:sbp:journl:66.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2024-12-27 04:04:47 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.