Bachman, D., Choi, J., Jeon, B. N., and Kopecky, K. Common factors in international stock prices: evidence from a cointegration Study. Int. Rev. Financial Anal., 5(1), 9–53 (1996).
Bao, W., Yue, J., and Rao, Y. A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS ONE, 12(7) (2017).
- Bengio, Y., Courville A., and Vincent, P. Representation learning: a review and new Perspectives. IEEE Transactions on Pattern Analysis & Machine Intelligence, 35(8), 1798–828 (2013).
Paper not yet in RePEc: Add citation now
Booth, G. G., Martikainen, T., and Tse, Y. Price and volatility spillovers in Scandinavian stock markets. J. Banking Finance, 21(6), 811–823 (1997).
Campbell, J.Y. and Hamao, Y. Predictable stock returns in the United States and Japan: A study of long-term capital market integration. J. Finance, 47 (1), 43–69 (1992).
- Cavalcantea, R. C., Brasileiro R. C., Souza, V. L. F., Nobrega, J. P., and Oliveira, A. L. I. Computational intelligence and financial markets: a survey and future directions. Expert Systems with Applications, 55, 194–211 (2016) and references cited therein.
Paper not yet in RePEc: Add citation now
Cochrane, J. H. Presidential address: Discount rates. The Journal of Finance. 66(4), 1047–1108 (2011).
- D. P. Kingma and J. Ba. Adam. A method for stochastic optimization. CoRR, (2014). Available: http://arxiv.org/abs/1412.6980.
Paper not yet in RePEc: Add citation now
Feng, G., S. Giglio, and Xiu, D. Taming the factor zoo: A test of new factors. Technical report, National Bureau of Economic Research (2019).
Fischer, T. and Krauss, C. Deep learning with long short-term memory networks for financial market predictions. FAU Discussion Papers in Economics, No.11 (2017). Multimodal Deep Learning for Finance 15
- Glodek, M., Tschechne, S., Layher, G., Schels, M., Brosch, T., Scherer, S., Kchele, M., Schmidt, M., Neumann, H., and Palm, G. Multiple classifier systems for the classification of audio-visual emotional states. In Affective Computing and Intelligent Interaction, Springer, 359–368 (2011).
Paper not yet in RePEc: Add citation now
- Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In International Conference on Artificial Intelligence & Statistics, 249–256, (2010).
Paper not yet in RePEc: Add citation now
Heaton, J. B., Polson, N. G., and Witte, J. H. Deep learning for finance: deep portfolios. Appl. Stochastic Models Bus. Ind., 33, 3–12 (2017).
Hou, K., Xue, C., and Zhang, L. Replicating anomalies. Technical report, National Bureau of Economic Research (2017).
- Ioffe, S. and Szegedy. C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In David Blei and Francis Bach, editors, Proceedings of the 32nd International Conference on Machine Learning (ICML-15), 37, 448–456. JMLR Workshop and Conference Proceedings (2015). Multimodal Deep Learning for Finance 17 −0.02 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 KO DHTC return −0.15 −0.10 −0.05
Paper not yet in RePEc: Add citation now
Jeon, B. N. and Chiang, T. A system of stock prices in world stock exchanges: common stochastic trends for 1975-1990? J. Economics Business, 43, 329–338 (1991).
Jeon, B. N. and Jang, B. S. The linkage between the US and Korean stock markets: The case of NASDAQ, KOSDAQ, and the semiconductor stocks. Research in International Business and Finance, 18, 319–340 (2004).
Karolyi, G. A. and Stulz, R. M. Why do markets move together? an investigation of U.S.-Japan stock return comovement. J. Finance, 51, 951–986 (1996).
Kasa, K. Common stochastic trends in international stock markets. Journal of Monetary Economics, 29, 95–124 (1992).
Lee, S. I. and Yoo, S. J. Threshold-based portfolio: the role of the threshold and its applications. The Journal of Supercomputing, 1–18 (2018). https://doi.org/10.1007/s11227-018-2577-1.
- Lee, S. J. (2006). Volatility spillover among six Asian countries and US. Unpublished Paper. Financial Supervisory, South Korea.
Paper not yet in RePEc: Add citation now
- Maas, A. L., Hannun, A. Y., and Ng, A. Y. Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the 30th International Conference on Machine Learning, 28, 6, (2013).
Paper not yet in RePEc: Add citation now
McLean, R. D. and Pontiff, J. Does academic research destroy stock return predictability ? The Journal of Finance, 71(1), 5–32 (2016).
- Morvant, E., Habrard A., and Ayache, S. Majority vote of diverse classifiers for late fusion. In Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), Springer, 153-162 (2014).
Paper not yet in RePEc: Add citation now
- Na, S. H. and Sohn, S. Y., Forecasting changes in Korea composite stock price index (KOSPI) using association rules. Expert Systems with Applications, 38, 9046–9049 (2011). 16 Multimodal Deep Learning for Finance
Paper not yet in RePEc: Add citation now
Nakagawa, K., Ito, T., Abe, M., and Izumi, K. Deep recurrent factor model: interpretable non-linear and time-varying multi-factor Model. arXiv:1901.11493 (2019).
Nakagawa, K., Uchida, T., and Aoshima, T. Deep factor model. arXiv:1810.01278v1 (2018).
- Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., and Ng, A. Y. Multimodal deep learning. Proc. the 28th International Conference on Machine Learning, 689–696 (2011).
Paper not yet in RePEc: Add citation now
- Ramirez, G. A., Baltrusaitis, T., and Morency, L.-P. Modeling latent discriminative dynamic of multi-dimensional affective signals. In Affective Computing and Intelligent Interaction, Springer, 396–406 (2011).
Paper not yet in RePEc: Add citation now
- Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning representations by back-propagating errors. Nature, 323(6088), 533–536, (1986).
Paper not yet in RePEc: Add citation now
- Shutova, E., Kiela, D., and Maillard, J. Black holes and white rabbits: Metaphor identification with visual features. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 160–170 (2016).
Paper not yet in RePEc: Add citation now
- Srivastava, N. and Salakhutdinov, R. Multimodal learning with deep boltzmann machines. Advances in Neural Information Processing Systems, 2222–2230 (2012).
Paper not yet in RePEc: Add citation now
- Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I. Salakhutdinov, R. Dropout: a simple way to prevent neural networks from overftting. J. Mach. Learn. Res., 15, 1929–1958 (2014).
Paper not yet in RePEc: Add citation now
Syriopoulos, T. International portfolio diversification to central European stock markets. Applied Financial Economics, 14, 1253–1268 (2004).
Taylor, M. P. and Tonks, I. The internationalization of stock markets and the abolition of U.K. exchange control. Rev. Economics Stat., 71, 332–336 (1989).
- Werbos, P. J. Beyond regression: New tools for prediction and analysis in the behavioral Sciences. PhD thesis, Harvard University (1974).
Paper not yet in RePEc: Add citation now
- Xing, F. Z., Cambria, E., and Welsch, R. E. Natural language based financial forecasting: a survey. Artif. Intell. Rev., 50, 49–73 (2018) and references cited therein.
Paper not yet in RePEc: Add citation now
Xing, F. Z., Cambria1, E., Malandri, L., and Vercellis, C. Discovering bayesian market views for intelligent asset allocation. arXiv:1802.09911v2 (2018).
- Xu, C., Tao, D., and Xu, C. A survey on multi-view learning. arXiv:1304.5634, (2013).
Paper not yet in RePEc: Add citation now
- Zheng, Y. Methodologies for cross-domain data fusion: An overview. IEEE transactions on big data, 1(1), 16–34 (2015).
Paper not yet in RePEc: Add citation now