[go: up one dir, main page]

create a website
Predicting daily highs and lows of exchange rates: a cointegration analysis. (2009). Wan, Alan ; He, Angela .
In: Journal of Applied Statistics.
RePEc:taf:japsta:v:36:y:2009:i:11:p:1191-1204.

Full description at Econpapers || Download paper

Cited: 14

Citations received by this document

Cites: 38

References cited by this document

Cocites: 31

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Carbon price interval prediction method based on probability density recurrence network and interval multi-layer perceptron. (2024). Tian, Lixin ; Wang, Minggang ; Xu, Hua ; Zhu, Mengrui.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:636:y:2024:i:c:s0378437124000517.

    Full description at Econpapers || Download paper

  2. Long Memory, Spurious Memory: Persistence in Range-Based Volatility of Exchange Rates. (2023). Sibbertsen, Philipp ; Afzal, Alia.
    In: Open Economies Review.
    RePEc:kap:openec:v:34:y:2023:i:4:d:10.1007_s11079-022-09686-2.

    Full description at Econpapers || Download paper

  3. Modelling cryptocurrency high–low prices using fractional cointegrating VAR. (2022). YAYA, OLAOLUWA ; Ogbonna, Ahamuefula ; Adewuyi, Adeolu O ; Vo, Xuan Vinh.
    In: International Journal of Finance & Economics.
    RePEc:wly:ijfiec:v:27:y:2022:i:1:p:489-505.

    Full description at Econpapers || Download paper

  4. Determining hedges and safe havens for stocks using interval analysis. (2022). Hsueh, Shao-Chieh ; Liu, Yilei ; Ju, Peijie ; Chang, Meng-Shiuh.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:61:y:2022:i:c:s1062940822000274.

    Full description at Econpapers || Download paper

  5. Modeling fractional cointegration between high and low stock prices in Asian countries. (2021). Sibbertsen, Philipp ; Afzal, Alia.
    In: Empirical Economics.
    RePEc:spr:empeco:v:60:y:2021:i:2:d:10.1007_s00181-019-01784-4.

    Full description at Econpapers || Download paper

  6. Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting. (2021). Ballini, Rosangela ; MacIel, Leandro.
    In: Computational Economics.
    RePEc:kap:compec:v:57:y:2021:i:2:d:10.1007_s10614-020-09978-0.

    Full description at Econpapers || Download paper

  7. Technical analysis based on high and low stock prices forecasts: evidence for Brazil using a fractionally cointegrated VAR model. (2020). MacIel, Leandro.
    In: Empirical Economics.
    RePEc:spr:empeco:v:58:y:2020:i:4:d:10.1007_s00181-018-1603-8.

    Full description at Econpapers || Download paper

  8. Modelling Cryptocurrency High-Low Prices using Fractional Cointegrating VAR. (2020). YAYA, OLAOLUWA ; Ogbonna, Ahamuefula ; Adewuyi, Adeolu O ; Vo, Xuan Vinh.
    In: MPRA Paper.
    RePEc:pra:mprapa:102190.

    Full description at Econpapers || Download paper

  9. High and low prices and the range in the European stock markets: A long-memory approach. (2020). Gil-Alana, Luis ; Caporale, Guglielmo Maria ; Poza, Carlos.
    In: Research in International Business and Finance.
    RePEc:eee:riibaf:v:52:y:2020:i:c:s0275531919306348.

    Full description at Econpapers || Download paper

  10. Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model. (2017). Bao, Yukun ; Xiong, Tao ; Li, Chongguang.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:60:y:2017:i:c:p:11-23.

    Full description at Econpapers || Download paper

  11. Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?. (2016). Winker, Peter ; Blancofernandez, Angela .
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:35:y:2016:i:2:p:113-146.

    Full description at Econpapers || Download paper

  12. On the predictability of stock prices: A case for high and low prices. (2013). Santucci de Magistris, Paolo ; Ranaldo, Angelo ; Caporin, Massimiliano.
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:37:y:2013:i:12:p:5132-5146.

    Full description at Econpapers || Download paper

  13. A trading strategy based on Callable Bull/Bear Contracts. (2010). Wan, Alan ; Cheung, Yin-Wong ; He, Angela W. W., ; Wan, Alan T. K., .
    In: Pacific-Basin Finance Journal.
    RePEc:eee:pacfin:v:18:y:2010:i:2:p:186-198.

    Full description at Econpapers || Download paper

  14. An empirical model of daily highs and lows of West Texas Intermediate crude oil prices. (2010). Wan, Alan ; He, Angela W. W., ; Wan, Alan T. K., ; Kwok, Jerry T. K., .
    In: Energy Economics.
    RePEc:eee:eneeco:v:32:y:2010:i:6:p:1499-1506.

    Full description at Econpapers || Download paper

References

References cited by this document

    References contributed by bjpark-32039

  1. A. He, Forecasting daily exchange rate volatility, a cointegration analysis, MPhil thesis, City University of Hong Kong, 2006.
    Paper not yet in RePEc: Add citation now
  2. A.K. Nag and A. Mitra, Forecasting daily foreign exchange rates using genetically optimized neural networks, J. Forecast. 21 (2002), pp. 501–511. Journal of Applied Statistics 1203

  3. A.R. Gallant, C.T. Hsu, and G.E. Tauchen, Using data range data to calibrate volatility diffusions and extract the forward integrated variance, Rev. Econom. Statist. 81 (1999), pp. 617–631.

  4. B. Park, An outlier robust GARCH model and forecasting volatility of exchange rate returns, J. Forecast. 21 (2002), pp. 381–393.

  5. C. Engel, Can the Markov switching model forecast exchange rates? J. Int. Econom. 36 (1994), pp. 151–165.

  6. C.C.P.Wolff, Models of exchange rates: A comparison of forecasting results, Int. J. Forecast. 4 (1988), pp. 605–607.

  7. C.C.P.Wolff, Time varying parameters and the out-of-sample forecasting performance of structural exchange rate models, J. Bus. Econ. Statist. 5 (1987), pp. 87–97.

  8. D. Alexander and L.R. Thomas III. Monetary/asset models of exchange rate determination: How well have they performed in the 1980’s? Int. J. Forecast. 3 (1987), pp. 53–64. S. Alizadeh, M.W. Brandt, and F.X. Diebold, Range-based estimation of stochastic volatility models, J. Finance 57 (2002), pp. 1047–1092. G. Boero and E. Marrocu, The performance of non-linear exchange rate models: A forecasting comparison, J. Forecast. 21 (2002), pp. 513–542. C. Brooks, A double-threshold GARCH model for the French Franc/Deutschmark exchange rate, J. Forecast. 20 (2001), pp. 135–143.
    Paper not yet in RePEc: Add citation now
  9. D. Harvey, S. Leybourne, and P. Newbold, Testing for equality of prediction mean squared errors, Int. J. Forecast. 13 (1997), pp. 281–291.

  10. D.A. Dickey andW.A. Fuller, Likelihood ratio statistics for autoregressive time series with a unit-root, Econometrica 49 (1981), pp. 1057–1073.

  11. D.E.A. Giles, J.A. Giles, and E. McCann, Causality, unit roots and export-led growth: The New Zealand experience, J. Int. Trade Econ. Dev. 1 (1993), pp. 195–218.
    Paper not yet in RePEc: Add citation now
  12. D.K. Guilkey and P. Schmidt, Extended tabulations for Dickey–Fuller tests, Econom. Lett. 31 (1989), pp. 355–357.

  13. F.X. Diebold and R.S. Mariano, Comparing predictive accuracy, J. Bus. Econom. Statist. 13 (1995), pp. 253–263.

  14. J. Osiewalski and M. Pipien, Bayesian comparison of bivariate ARCH-type models for the main exchange rates in Poland, J. Econometrics 123 (2004), pp. 371–391.

  15. J. Wright, Bayesian model averaging and exchange rate forecasts, J. Econometrics 146 (2008), pp. 329–341.

  16. J.F. Kaashoek and H. Van Dijk, Neural network pruning applied to real exchange rate analysis, J. Forecast. 21 (2002), pp. 559–577.

  17. J.J. Dolado, T. Jenkinson, and S. Sosvilla-Rivero, Cointegration and unit-roots, J. Econom. Surveys 4 (1990), pp. 249–273.

  18. J.L.Wu, A re-examination of the exchange rate-interest differential relationship: Evidence from Germany and Japan, J. Int. Money Finance 18 (1999), pp. 319–336.

  19. M. Fernandes, B. de Sá Mota, and G. Rocha, A multivariate conditional autoregressive range model, Econom. Lett. 86 (2005), pp. 435–440.

  20. M. Fernandes, Non-linearity and exchange rates, J. Forecast. 17 (1998), pp. 497–514.
    Paper not yet in RePEc: Add citation now
  21. M. Osterwald-Lenum, A note with quantiles of the asymptotic distribution of the maximum likelihood cointegration rank test statistics, Oxford Bull. Econom. Statist. 54 (1992), pp. 461–472.

  22. M. Parkinson, The extreme value method for estimating the variance of the rate of return, J. Bus. 53 (1980), pp. 61–65.

  23. N. Gradojevic and J.Yang, Non-linear, non-parametric, non-fundamental exchange rate forecasting, J. Forecast. 25 (2006), pp. 227–245.

  24. N. Sarantis and C. Stewart, Structural, VAR and BVAR models of exchange rate determination: A comparison of their forecasting performance, J. Forecast. 14 (1994), pp. 201–215.
    Paper not yet in RePEc: Add citation now
  25. N.L. Joseph, Model specification and forecasting foreign exchange rates with vector autoregressions, J. Forecast. 20 (2001), pp. 451–484.

  26. R. Chou, Forecasting financial volatilities with extreme values: The conditional autoregressive range (CARR) model, J. Money Credit Banking 37 (2005), pp. 561–582.

  27. R. McDonald and M.P.Taylor, The monetary model of the exchange rate: Long-run relationships, short-run dynamics and how to beat a random walk, J. Int. Money Finance 13 (1994), pp. 276–290.

  28. R.A. Messe and K. Rogoff, Empirical exchange rate models of the seventies: Do they fit out of sample? J. Int. Econom. 14 (1983), pp. 3–24.

  29. S. Johansen and K. Juselius, Maximum likelihood estimation and inference on cointegration – with applications to the demand for money, Oxford Bull. Econom. Statist. 52 (1990), pp. 169–210.

  30. S. Johansen, Statistical analysis of cointegrating vectors, J. Econ. Dyn. Control 12 (1988), pp. 231–254.
    Paper not yet in RePEc: Add citation now
  31. W.A. Fuller, Introduction to Statistical Time Series,Wiley, NewYork, 1976.
    Paper not yet in RePEc: Add citation now
  32. Y.W. Cheung and C.Y.P.Wong, A survey of market practitioners’ views on exchange rate dynamics, J. Int. Econom. 51 (2000), pp. 401–419.
    Paper not yet in RePEc: Add citation now
  33. Y.W. Cheung and M.D. Chinn, Currency traders and exchange rate dynamics: A survey of the U.S. market, J. Int. Money Finance 20 (2001), pp. 439–471.

  34. Y.W. Cheung and U.G. Erlandsson, Exchange rates and Markov switching dynamics, J. Bus. Econom. Statist. 23 (2005), pp. 314–320.

  35. Y.W. Cheung, An empirical model of daily highs and lows, Int. J. Finance Econom. 12 (2007), pp. 1–20.

  36. Y.W. Cheung, Long memory in foreign exchange rate, J. Bus. Econom. Statist. 11 (1993), pp. 93–102.

  37. Y.W. Cheung, M.D. Chinn, and A.G. Pascual, Empirical exchange rate models of the nineties: Are any fit to survive? J. Int. Money Finance 24 (2005), pp. 1150–1175.

  38. Y.W. Cheung, M.D. Chinn, and A.G. Pascual, What do we know about recent exchange rate models? In-sample fit and out-of-sample performance evaluated, in Exchange Rate Economics: Where Do We Stand? P. De Grauwe, ed., Chapter 8, MIT Press, NewYork, 2005, pp. 239–276.

Cocites

Documents in RePEc which have cited the same bibliography

  1. Zooming in and out the landscape: Artificial intelligence and system dynamics in business and management. (2024). Iandolo, Francesca ; Franco, Eduardo ; Armenia, Stefano ; Vito, Pietro ; Maielli, Giuliano.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:200:y:2024:i:c:s0040162523008168.

    Full description at Econpapers || Download paper

  2. A review of artificial intelligence quality in forecasting asset prices. (2023). Silva, Geraldo Nunes ; Barboza, Flavio ; Fiorucci, Jose Augusto.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:42:y:2023:i:7:p:1708-1728.

    Full description at Econpapers || Download paper

  3. Explaining Exchange Rate Forecasts with Macroeconomic Fundamentals Using Interpretive Machine Learning. (2023). M. I. M. Wahab, ; Cevik, Mucahit ; Neghab, Davood Pirayesh.
    In: Papers.
    RePEc:arx:papers:2303.16149.

    Full description at Econpapers || Download paper

  4. An application of deep learning for exchange rate forecasting.. (2022). Sorić, Petar ; Claveria, Oscar ; Torra, Salvador ; Monte, Enric.
    In: IREA Working Papers.
    RePEc:ira:wpaper:202201.

    Full description at Econpapers || Download paper

  5. Accuracy of explanations of machine learning models for credit decisions. (2022). Carbo, Jose Manuel ; Alonso, Andres.
    In: Working Papers.
    RePEc:bde:wpaper:2222.

    Full description at Econpapers || Download paper

  6. “An application of deep learning for exchange rate forecasting”. (2022). Sorić, Petar ; Claveria, Oscar ; Torra, Salvador ; Monte, Enric.
    In: AQR Working Papers.
    RePEc:aqr:wpaper:202201.

    Full description at Econpapers || Download paper

  7. .

    Full description at Econpapers || Download paper

  8. Should Deep Learning Models be in High Demand, or Should They Simply be a Very Hot Topic? A Comprehensive Study for Exchange Rate Forecasting. (2021). Arabaci, Ozer ; Yilmaz, Firat Melih.
    In: Computational Economics.
    RePEc:kap:compec:v:57:y:2021:i:1:d:10.1007_s10614-020-10047-9.

    Full description at Econpapers || Download paper

  9. Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis. (2021). Pattnaik, Debidutta ; Lim, Weng Marc ; Kumar, Satish ; Goodell, John W.
    In: Journal of Behavioral and Experimental Finance.
    RePEc:eee:beexfi:v:32:y:2021:i:c:s2214635021001210.

    Full description at Econpapers || Download paper

  10. A New Unit Root Test for Unemployment Hysteresis Based on the Autoregressive Neural Network*. (2021). YAYA, OLAOLUWA ; Ogbonna, Ahamuefula ; Gil-Alana, Luis ; Furuoka, Fumitaka ; Gilalana, Luis A.
    In: Oxford Bulletin of Economics and Statistics.
    RePEc:bla:obuest:v:83:y:2021:i:4:p:960-981.

    Full description at Econpapers || Download paper

  11. A new unit root analysis for testing hysteresis in unemployment. (2019). Ogbonna, Ahamuefula ; Gil-Alana, Luis ; Furuoka, Fumitaka ; Yaya, Olaoluwa S.
    In: MPRA Paper.
    RePEc:pra:mprapa:96621.

    Full description at Econpapers || Download paper

  12. Equalizing Seasonal Time Series Using Artificial Neural Networks in Predicting the Euro–Yuan Exchange Rate. (2019). Ule, Petr ; Horak, Jakub ; Vochozka, Marek.
    In: JRFM.
    RePEc:gam:jjrfmx:v:12:y:2019:i:2:p:76-:d:227157.

    Full description at Econpapers || Download paper

  13. A new multiscale decomposition ensemble approach for forecasting exchange rates. (2019). Wei, Yunjie ; Wang, Shouyang ; Sun, Shaolong.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:81:y:2019:i:c:p:49-58.

    Full description at Econpapers || Download paper

  14. Deep networks for predicting direction of change in foreign exchange rates. (2017). Galeshchuk, Svitlana ; Mukherjee, Sumitra .
    In: Intelligent Systems in Accounting, Finance and Management.
    RePEc:wly:isacfm:v:24:y:2017:i:4:p:100-110.

    Full description at Econpapers || Download paper

  15. Selecting explanatory factors of voting decisions by means of fsQCA and ANN. (2017). Vizcaíno-González, Marcos ; Sainz, Jorge ; Sainz-Gonzalez, Jorge ; Pineiro-Chousa, Juan ; Vizcaino-Gonzalez, Marcos.
    In: Quality & Quantity: International Journal of Methodology.
    RePEc:spr:qualqt:v:51:y:2017:i:5:d:10.1007_s11135-016-0375-5.

    Full description at Econpapers || Download paper

  16. Timing Foreign Exchange Markets. (2016). Malone, Samuel ; Horst, Enrique Ter ; Gramacy, Robert B.
    In: Econometrics.
    RePEc:gam:jecnmx:v:4:y:2016:i:1:p:15-:d:65565.

    Full description at Econpapers || Download paper

  17. Forecasting Euro and Turkish Lira Exchange Rates with Artificial Neural Networks (ANN). (2014). Goksu, Ali ; Erdogan, Olcay .
    In: International Journal of Academic Research in Accounting, Finance and Management Sciences.
    RePEc:hur:ijaraf:v:4:y:2014:i:4:p:307-316.

    Full description at Econpapers || Download paper

  18. Do Exchange Rate Series Present General Dependence? Some Results using Recurrence Quantification Analysis. (2013). Saura, Dulce ; Aparicio, Teresa .
    In: Journal of Economics and Behavioral Studies.
    RePEc:rnd:arjebs:v:5:y:2013:i:10:p:678-686.

    Full description at Econpapers || Download paper

  19. Crude oil price analysis and forecasting using wavelet decomposed ensemble model. (2012). Yu, Lean ; He, Kaijian ; Lai, Kin Keung.
    In: Energy.
    RePEc:eee:energy:v:46:y:2012:i:1:p:564-574.

    Full description at Econpapers || Download paper

  20. NEURO‐GENETIC PREDICTIONS OF CURRENCY CRISES. (2011). Marghescu, Dorina ; Sarlin, Peter.
    In: Intelligent Systems in Accounting, Finance and Management.
    RePEc:wly:isacfm:v:18:y:2011:i:4:p:145-160.

    Full description at Econpapers || Download paper

  21. FORECASTING THE UK/US EXCHANGE RATE WITH DIVISIA MONETARY MODELS AND NEURAL NETWORKS. (2011). Karoglou, Michail ; Bissoondeeal, Rakesh ; Gazely, Alicia M..
    In: Scottish Journal of Political Economy.
    RePEc:bla:scotjp:v:58:y:2011:i:1:p:127-152.

    Full description at Econpapers || Download paper

  22. Predicting daily highs and lows of exchange rates: a cointegration analysis. (2009). Wan, Alan ; He, Angela .
    In: Journal of Applied Statistics.
    RePEc:taf:japsta:v:36:y:2009:i:11:p:1191-1204.

    Full description at Econpapers || Download paper

  23. Neural Networks and Genetic Algorithms as Forecasting Tools: A Case Study on German Regions. (2008). Reggiani, Aura ; Patuelli, Roberto ; Nijkamp, Peter ; Longhi, Simonetta.
    In: Environment and Planning B.
    RePEc:sae:envirb:v:35:y:2008:i:4:p:701-722.

    Full description at Econpapers || Download paper

  24. Recurrent Support Vector Regression for a Nonlinear ARMA Model with Applications to Forecasting Financial Returns. (2008). Härdle, Wolfgang ; Jeong, Kiho ; Hardle, Wolfgang K. ; Chen, Shiyi.
    In: SFB 649 Discussion Papers.
    RePEc:hum:wpaper:sfb649dp2008-051.

    Full description at Econpapers || Download paper

  25. Forecasting exchange rates: A robust regression approach. (2007). Franck, Raphael ; Preminger, Arie.
    In: International Journal of Forecasting.
    RePEc:eee:intfor:v:23:y:2007:i:1:p:71-84.

    Full description at Econpapers || Download paper

  26. Forecasting Economic Data with Neural Networks. (2006). Suarez, Emilio.
    In: Computational Economics.
    RePEc:kap:compec:v:28:y:2006:i:1:p:71-88.

    Full description at Econpapers || Download paper

  27. On the short-term predictability of exchange rates: A BVAR time-varying parameters approach. (2006). Sarantis, Nicholas .
    In: Journal of Banking & Finance.
    RePEc:eee:jbfina:v:30:y:2006:i:8:p:2257-2279.

    Full description at Econpapers || Download paper

  28. Forecasting Regional Employment in Germany by Means of Neural Networks and Genetic Algorithms. (2005). Reggiani, Aura ; Patuelli, Roberto ; Nijkamp, Peter ; Longhi, Simonetta.
    In: Computational Economics.
    RePEc:wpa:wuwpco:0511002.

    Full description at Econpapers || Download paper

  29. A comparison of linear forecasting models and neural networks: an application to Euro inflation and Euro Divisia. (2005). Elger, Thomas ; Bissoondeeal, Rakesh ; Gazely, Alicia M. ; Binner, Jane M. ; Mullineux, Andrew W..
    In: Applied Economics.
    RePEc:taf:applec:v:37:y:2005:i:6:p:665-680.

    Full description at Econpapers || Download paper

  30. Forecasting exchange rates: a robust regression approach. (2005). Franck, Raphael ; Preminger, Arie.
    In: CORE Discussion Papers.
    RePEc:cor:louvco:2005025.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2024-12-24 02:51:31 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.