[go: up one dir, main page]

login
A321815
Sum of 11th powers of odd divisors of n.
3
1, 1, 177148, 1, 48828126, 177148, 1977326744, 1, 31381236757, 48828126, 285311670612, 177148, 1792160394038, 1977326744, 8649804864648, 1, 34271896307634, 31381236757, 116490258898220, 48828126, 350279478046112, 285311670612, 952809757913928
OFFSET
1,3
LINKS
J. W. L. Glaisher, On the representations of a number as the sum of two, four, six, eight, ten, and twelve squares, Quart. J. Math. 38 (1907), 1-62 (see p. 4 and p. 8).
Eric Weisstein's World of Mathematics, Odd Divisor Function.
FORMULA
a(n) = A013959(A000265(n)) = sigma_11(odd part of n); in particular, a(2^k) = 1 for all k >= 0. - M. F. Hasler, Nov 26 2018
G.f.: Sum_{k>=1} (2*k - 1)^11*x^(2*k-1)/(1 - x^(2*k-1)). - Ilya Gutkovskiy, Dec 22 2018
From Amiram Eldar, Nov 02 2022: (Start)
Multiplicative with a(2^e) = 1 and a(p^e) = (p^(11*e+11)-1)/(p^11-1) for p > 2.
Sum_{k=1..n} a(k) ~ c * n^12, where c = zeta(12)/24 = 691*Pi^12/15324309000 = 0.0416769... . (End)
MATHEMATICA
a[n_] := DivisorSum[n, #^11&, OddQ[#]&]; Array[a, 20] (* Amiram Eldar, Dec 07 2018 *)
PROG
(PARI) apply( A321815(n)=sigma(n>>valuation(n, 2), 11), [1..30]) \\ M. F. Hasler, Nov 26 2018
(GAP) List(List(List([1..25], j->DivisorsInt(j)), i->Filtered(i, k->IsOddInt(k))), m->Sum(m, n->n^11)); # Muniru A Asiru, Dec 07 2018
(Python)
from sympy import divisor_sigma
def A321815(n): return int(divisor_sigma(n>>(~n&n-1).bit_length(), 11)) # Chai Wah Wu, Jul 16 2022
CROSSREFS
Column k=11 of A285425.
Cf. A050999, A051000, A051001, A051002, A321810 - A321816 (analog for 2nd .. 12th powers).
Cf. A321543 - A321565, A321807 - A321836 for related sequences.
Sequence in context: A017315 A017435 A017567 * A081867 A133972 A233480
KEYWORD
nonn,mult
AUTHOR
N. J. A. Sloane, Nov 24 2018
STATUS
approved