[go: up one dir, main page]

login
A299281
Coordination sequence for "reo-e" 3D uniform tiling.
51
1, 6, 19, 41, 72, 114, 166, 224, 288, 364, 454, 550, 648, 758, 886, 1020, 1152, 1296, 1462, 1634, 1800, 1978, 2182, 2392, 2592, 2804, 3046, 3294, 3528, 3774, 4054, 4340, 4608, 4888, 5206, 5530, 5832, 6146, 6502, 6864, 7200, 7548, 7942, 8342, 8712, 9094, 9526, 9964, 10368
OFFSET
0,2
COMMENTS
First 20 terms computed by Davide M. Proserpio using ToposPro.
REFERENCES
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #9.
LINKS
Reticular Chemistry Structure Resource (RCSR), The reo-e tiling (or net)
FORMULA
G.f.: (x+1)*(x^3+x^2+1)*(x^6-2*x^5+x^4+3*x^2+2*x+1) / ((x^2+1)^2*(1-x)^3). - N. J. A. Sloane, Feb 12 2018
a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7) for n>8. - Colin Barker, Feb 14 2018
a(n) = (9*n^2 + 4*(1 - A056594(n)) - (n - 4)*A056594(n+1))/2 for n > 3. - Stefano Spezia, Apr 23 2023
PROG
(PARI) Vec((1 + x)*(1 + x^2 + x^3)*(1 + 2*x + 3*x^2 + x^4 - 2*x^5 + x^6) / ((1 - x)^3*(1 + x^2)^2) + O(x^60)) \\ Colin Barker, Feb 14 2018
CROSSREFS
See A299282 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Cf. A056594.
Sequence in context: A273571 A273778 A173980 * A212684 A035495 A061293
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 10 2018
EXTENSIONS
a(21)-a(40) from Davide M. Proserpio, Feb 12 2018
STATUS
approved