[go: up one dir, main page]

login
A299259
Coordination sequence for 3D uniform tiling formed by stacking parallel layers of the 4.8.8 2D tiling (cf. A008576).
51
1, 5, 13, 26, 45, 69, 98, 133, 173, 218, 269, 325, 386, 453, 525, 602, 685, 773, 866, 965, 1069, 1178, 1293, 1413, 1538, 1669, 1805, 1946, 2093, 2245, 2402, 2565, 2733, 2906, 3085, 3269, 3458, 3653, 3853, 4058, 4269, 4485, 4706, 4933, 5165, 5402, 5645, 5893, 6146, 6405, 6669, 6938, 7213, 7493
OFFSET
0,2
LINKS
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #24.
Reticular Chemistry Structure Resource (RCSR), The fee tiling (or net)
FORMULA
G.f.: (x + 1)^3*(x^2 + 1) / ((1 - x)^3*(x^2 + x + 1)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>5. - Colin Barker, Feb 09 2018
a(n) = (4*(5 + 6*n^2) + A061347(n))/9 for n > 0. - Stefano Spezia, Feb 17 2024
MATHEMATICA
CoefficientList[Series[(x+1)^3*(x^2+1)/((1-x)^3*(x^2+x+1)), {x, 0, 50}], x] (* G. C. Greubel, Feb 20 2018 *)
PROG
(PARI) Vec((1 + x)^3*(1 + x^2) / ((1 - x)^3*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, Feb 09 2018
(Magma) I:=[13, 26, 45, 69, 98]; [1, 5] cat [n le 5 select I[n] else 2*Self(n-1) - Self(n-2) + Self(n-3) - 2*Self(n-4) + Self(n-5): n in [1..30]]; // G. C. Greubel, Feb 20 2018
CROSSREFS
Partial sums give A299265.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Sequence in context: A301673 A301300 A301677 * A008778 A299277 A014813
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 07 2018
STATUS
approved