[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107144
Primes of the form 5x^2 + 8y^2.
3
5, 13, 37, 53, 157, 173, 197, 277, 293, 317, 373, 397, 557, 613, 653, 677, 733, 757, 773, 797, 853, 877, 997, 1013, 1093, 1117, 1213, 1237, 1277, 1373, 1453, 1493, 1597, 1613, 1637, 1693, 1733, 1877, 1933, 1973, 1997, 2053, 2213, 2237, 2293
OFFSET
1,1
COMMENTS
Discriminant = -160. See A107132 for more information.
Except for 5, also primes of the form 13x^2 + 8xy + 32y^2. See A140633. - T. D. Noe, May 19 2008
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
FORMULA
Except for 5, the primes are congruent to {13, 37} (mod 40). - T. D. Noe, May 02 2008
MATHEMATICA
QuadPrimes2[5, 0, 8, 10000] (* see A106856 *)
PROG
(Magma) [5] cat [ p: p in PrimesUpTo(3000) | p mod 40 in {13, 37} ]; // Vincenzo Librandi, Jul 24 2012
(PARI) list(lim)=my(v=List([5]), t); forprime(p=13, lim, t=p%40; if(t==13||t==37, listput(v, p))); Vec(v) \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
Cf. A139827.
Sequence in context: A141408 A238460 A342475 * A137815 A089523 A375794
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 13 2005
STATUS
approved