[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375794
Numbers k such that 2^k == 2 (mod ((k - 1)*k/2)) and not 2^k == 2 (mod ((k - 1)*k)).
0
5, 13, 37, 61, 101, 109, 157, 181, 421, 541, 661, 757, 821, 1093, 1621, 1861, 2029, 2053, 2269, 2341, 2437, 2701, 2917, 3277, 3301, 3613, 4621, 4789, 4861, 5461, 5501, 5581, 6301, 6661, 7309, 8101, 8269, 8581, 8821, 8893, 9829, 9901, 10141, 10261, 10501, 10837, 11701, 12101, 12301
OFFSET
1,1
COMMENTS
a(22) = 2701 is the first composite term of the sequence.
MATHEMATICA
Select[Range[2, 12400], PowerMod[2, #, (#-1)#/2]==2 && !PowerMod[2, #, (#-1)#]==2 &] (* Stefano Spezia, Sep 19 2024 *)
PROG
(Magma) [k: k in [2..13333] | Modexp(2, k, (k^2-k) div 2) eq 2 and not Modexp(2, k, k^2-k) eq 2];
(PARI) isok(k)={k > 1 && Mod(2, (k-1)*k)^k == 2 + (k-1)*k/2} \\ Andrew Howroyd, Aug 29 2024
CROSSREFS
Sequence in context: A107144 A137815 A089523 * A058507 A111057 A019268
KEYWORD
nonn
AUTHOR
STATUS
approved