OFFSET
0,2
COMMENTS
LINKS
W. M. B. Dukes, Tables of matroids.
W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000.
W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g.
S. C. Locke, Matroids
EXAMPLE
The 16 possible sets E such that ({1, 2, 3}, E) is a matroid:
{{}}
{{}, {1}}
{{}, {2}}
{{}, {3}}
{{}, {1}, {2}}
{{}, {1}, {3}}
{{}, {2}, {3}}
{{}, {1}, {2}, {3}}
{{}, {1}, {2}, {1, 2}}
{{}, {1}, {3}, {1, 3}}
{{}, {2}, {3}, {2, 3}}
{{}, {1}, {2}, {3}, {1, 2}, {1, 3}}
{{}, {1}, {2}, {3}, {1, 2}, {2, 3}}
{{}, {1}, {2}, {3}, {1, 3}, {2, 3}}
{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}
{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}
CROSSREFS
KEYWORD
nonn,nice,more
AUTHOR
N. J. A. Sloane, Dec 30 2000
STATUS
approved