# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a058673 Showing 1-1 of 1 %I A058673 #21 Sep 13 2023 23:18:35 %S A058673 1,2,5,16,68,406,3807,75164,10607540 %N A058673 Number of matroids on n labeled points. %C A058673 From _Lorenzo Sauras Altuzarra_, Aug 10 2023: (Start) %C A058673 a(n) <= A014466(n). %C A058673 a(n) <= A306020(n). (End) %H A058673 W. M. B. Dukes, Tables of matroids. %H A058673 W. M. B. Dukes, Counting and Probability in Matroid Theory, Ph.D. Thesis, Trinity College, Dublin, 2000. %H A058673 W. M. B. Dukes, The number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004. %H A058673 W. M. B. Dukes, On the number of matroids on a finite set, Séminaire Lotharingien de Combinatoire 51 (2004), Article B51g. %H A058673 S. C. Locke, Matroids %H A058673 Index entries for sequences related to matroids %e A058673 The 16 possible sets E such that ({1, 2, 3}, E) is a matroid: %e A058673 {{}} %e A058673 {{}, {1}} %e A058673 {{}, {2}} %e A058673 {{}, {3}} %e A058673 {{}, {1}, {2}} %e A058673 {{}, {1}, {3}} %e A058673 {{}, {2}, {3}} %e A058673 {{}, {1}, {2}, {3}} %e A058673 {{}, {1}, {2}, {1, 2}} %e A058673 {{}, {1}, {3}, {1, 3}} %e A058673 {{}, {2}, {3}, {2, 3}} %e A058673 {{}, {1}, {2}, {3}, {1, 2}, {1, 3}} %e A058673 {{}, {1}, {2}, {3}, {1, 2}, {2, 3}} %e A058673 {{}, {1}, {2}, {3}, {1, 3}, {2, 3}} %e A058673 {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}} %e A058673 {{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} %Y A058673 Row sums of A058669. Closely related to A114491. %Y A058673 Cf. A014466 (abstract simplicial complexes), A055545 (unlabeled matroids), A306020. %K A058673 nonn,nice,more %O A058673 0,2 %A A058673 _N. J. A. Sloane_, Dec 30 2000 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE