[go: up one dir, main page]

login
A047396
Numbers that are congruent to {1, 2, 6} mod 8.
1
1, 2, 6, 9, 10, 14, 17, 18, 22, 25, 26, 30, 33, 34, 38, 41, 42, 46, 49, 50, 54, 57, 58, 62, 65, 66, 70, 73, 74, 78, 81, 82, 86, 89, 90, 94, 97, 98, 102, 105, 106, 110, 113, 114, 118, 121, 122, 126, 129, 130, 134, 137, 138, 142, 145, 146, 150, 153, 154, 158
OFFSET
1,2
COMMENTS
Numbers n such that the determinant of the character table of the cyclic group C_n is an integer (for every n this determinant has degree at most 2 over the rationals Q). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jul 16 2001
FORMULA
G.f.: x*(1+x+4*x^2+2*x^3)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 05 2011
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4, with a(1)=1, a(2)=2, a(3)=6, a(4)=9. - Harvey P. Dale, Sep 30 2012
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = (24*n-21+3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-2, a(3k-1) = 8k-6, a(3k-2) = 8k-7. (End)
MAPLE
A047396:=n->(24*n-21+3*cos(2*n*Pi/3)+5*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047396(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Flatten[#+{1, 2, 6}&/@(8*Range[0, 20])] (* or *) LinearRecurrence[ {1, 0, 1, -1}, {1, 2, 6, 9}, 80] (* Harvey P. Dale, Sep 30 2012 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [1, 2, 6]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Sequence in context: A016726 A360136 A359821 * A276936 A276937 A243373
KEYWORD
nonn,easy
STATUS
approved