[go: up one dir, main page]

login
A047394
Numbers that are congruent to {0, 1, 6} mod 8.
1
0, 1, 6, 8, 9, 14, 16, 17, 22, 24, 25, 30, 32, 33, 38, 40, 41, 46, 48, 49, 54, 56, 57, 62, 64, 65, 70, 72, 73, 78, 80, 81, 86, 88, 89, 94, 96, 97, 102, 104, 105, 110, 112, 113, 118, 120, 121, 126, 128, 129, 134, 136, 137, 142, 144, 145, 150, 152, 153, 158
OFFSET
1,3
FORMULA
G.f.: x^2*(1+5*x+2*x^2)/((1+x+x^2)*(x-1)^2). - R. J. Mathar, Dec 05 2011
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 8*n/3-3+cos(2*n*Pi/3)+5*sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k-2, a(3k-1) = 8k-7, a(3k-2) = 8k-8. (End)
MAPLE
A047394:=n->8*n/3-3+cos(2*n*Pi/3)+5*sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047394(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 1, 6}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 6]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Sequence in context: A067812 A356312 A337543 * A184874 A085725 A049721
KEYWORD
nonn,easy
STATUS
approved