[go: up one dir, main page]

login
A047345
Numbers that are congruent to {0, 4} mod 7.
14
0, 4, 7, 11, 14, 18, 21, 25, 28, 32, 35, 39, 42, 46, 49, 53, 56, 60, 63, 67, 70, 74, 77, 81, 84, 88, 91, 95, 98, 102, 105, 109, 112, 116, 119, 123, 126, 130, 133, 137, 140, 144, 147, 151, 154, 158, 161, 165, 168, 172, 175, 179, 182, 186, 189, 193
OFFSET
1,2
COMMENTS
Nonnegative k such that k or 5*k + 1 is divisible by 7. - Bruno Berselli, Feb 13 2018
Maximum number of 2's possible in an infinite Minesweeper grid with n mines. The pattern of mines (x) that generates these 2's looks like "...xx.xx.xx...". - Dmitry Kamenetsky, Apr 14 2018
FORMULA
a(n) = ceiling(7*(n-1)/2).
a(n) = 7*n - a(n-1) - 10 for n>1, a(1)=0. - Vincenzo Librandi, Aug 05 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 7*n/2 - 13/4 + (-1)^n/4.
G.f.: x^2*(4 + 3*x) / ((1 + x)*(x - 1)^2). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*b(k), with b(0) = 4, b(k) = A005009(k-1) = 7*2^(k-1), and k>0. - Philippe Deléham, Oct 17 2011.
a(n) = 4*(n - 1) - floor((n - 1)/2). - Wesley Ivan Hurt, Jun 14 2013
a(n) = 2*(n - 1) + floor((3*n - 2 - (n mod 2))/2). - Wesley Ivan Hurt, Mar 31 2014
E.g.f.: 3 + ((14*x - 13)*exp(x) + exp(-x))/4. - David Lovler, Aug 31 2022
MAPLE
A047345:=n->ceil(7*(n-1)/2); seq(A047345(n), n=1..100); # Wesley Ivan Hurt, Mar 31 2014
MATHEMATICA
Table[Ceiling[7 (n - 1)/2], {n, 100}] (* Wesley Ivan Hurt, Mar 31 2014 *)
PROG
(PARI) forstep(n=0, 200, [4, 3], print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
CROSSREFS
Cf. A030123.
Sequence in context: A190769 A083051 A198269 * A310728 A247157 A087070
KEYWORD
nonn,easy
STATUS
approved