[go: up one dir, main page]

login
A047590
Numbers that are congruent to {0, 6, 7} mod 8.
1
0, 6, 7, 8, 14, 15, 16, 22, 23, 24, 30, 31, 32, 38, 39, 40, 46, 47, 48, 54, 55, 56, 62, 63, 64, 70, 71, 72, 78, 79, 80, 86, 87, 88, 94, 95, 96, 102, 103, 104, 110, 111, 112, 118, 119, 120, 126, 127, 128, 134, 135, 136, 142, 143, 144, 150, 151, 152, 158, 159
OFFSET
1,2
FORMULA
From Wesley Ivan Hurt, Jun 09 2016: (Start)
G.f.: x^2*(6+x+x^2)/((x-1)^2*(1+x+x^2)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (24*n-9-10*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-2, a(3k-2) = 8k-8. (End)
MAPLE
A047590:=n->(24*n-9-10*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047590(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 6, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 6, 7, 8}, 100] (* Harvey P. Dale, Nov 18 2020 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 6, 7]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Sequence in context: A328118 A047275 A373385 * A146329 A272344 A133893
KEYWORD
nonn,easy
STATUS
approved