OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
FORMULA
From Wesley Ivan Hurt, Jun 16 2016: (Start)
G.f.: x^2*(2+x+2*x^2+x^3+x^4+x^5)/((x-1)^2*(1+x+x^2+x^3+x^4+x^5)).
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7.
a(n) = (24*n-15+3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)-6*sin((1+2*n)*Pi/6))/18.
a(6k) = 8k-1, a(6k-1) = 8k-2, a(6k-2) = 8k-3, a(6k-3) = 8k-5, a(6k-4) = 8k-6, a(6k-5) = 8k-8. (End)
Sum_{n>=2} (-1)^n/a(n) = (8-sqrt(2))*log(2)/16 + sqrt(2)*log(sqrt(2)+2)/8 - 3*(sqrt(2)-1)*Pi/16. - Amiram Eldar, Dec 27 2021
MAPLE
A047587:=n->(24*n-15+3*cos(n*Pi)-2*sqrt(3)*cos((1-4*n)*Pi/6)-6*sin((1+2*n)*Pi/6))/18: seq(A047587(n), n=1..100); # Wesley Ivan Hurt, Jun 16 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 2, 3, 5, 6, 7}, Mod[#, 8]]&] (* Harvey P. Dale, Oct 04 2011 *)
PROG
(Magma) [n : n in [0..100] | n mod 8 in [0, 2, 3, 5, 6, 7]]; // Wesley Ivan Hurt, Jun 16 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved