OFFSET
1,2
COMMENTS
Terms that occur on the first two rows of array A257852. Odd numbers that are not of the form 4k+1, where k is an odd number. - Antti Karttunen, Jun 06 2024
LINKS
Colin Barker, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
FORMULA
a(n) = (24*n+2*sqrt(3)*sin(2*Pi*n/3)+6*cos(2*Pi*n/3)-15)/9. - Fred Daniel Kline, Nov 12 2015
From Colin Barker, Nov 12 2015: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
G.f.: x*(x^3+4*x^2+2*x+1) / ((x-1)^2*(x^2+x+1)). (End)
a(n+3) = a(n) + 8 for all n in Z. - Michael Somos, Nov 15 2015
a(3k) = 8k-1, a(3k-1) = 8k-5, a(3k-2) = 8k-7. - Wesley Ivan Hurt, Jun 13 2016
a(n) = 8 * floor((n-1) / 3) + 2^(((n-1) mod 3) + 1) - 1. - Fred Daniel Kline, Aug 09 2016
a(n) = 2*(n + floor(n/3)) - 1. - Wolfdieter Lang, Sep 10 2021
EXAMPLE
G.f. = x + 3*x^2 + 7*x^3 + 9*x^4 + 11*x^5 + 15*x^6 + 17*x^7 + 19*x^8 + 23*x^9 + ...
MAPLE
A047529:=n->(24*n+2*sqrt(3)*sin(2*Pi*n/3)+6*cos(2*Pi*n/3)-15)/9: seq(A047529(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
MATHEMATICA
Select[Range[150], MemberQ[{1, 3, 7}, Mod[#, 8]]&] (* Harvey P. Dale, May 02 2011 *)
LinearRecurrence[{1, 0, 1, -1}, {1, 3, 7, 9}, 100] (* Vincenzo Librandi, Jun 14 2016 *)
PROG
(PARI) Vec(x*(x^3+4*x^2+2*x+1)/((x-1)^2*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Nov 12 2015
(PARI) {a(n) = n\3 * 8 + [-1, 1, 3][n%3 + 1]}; /* Michael Somos, Nov 15 2015 */
(Magma) [n : n in [0..150] | n mod 8 in [1, 3, 7]]; // Wesley Ivan Hurt, Jun 13 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved