[go: up one dir, main page]

login
A047529
Numbers that are congruent to {1, 3, 7} mod 8.
12
1, 3, 7, 9, 11, 15, 17, 19, 23, 25, 27, 31, 33, 35, 39, 41, 43, 47, 49, 51, 55, 57, 59, 63, 65, 67, 71, 73, 75, 79, 81, 83, 87, 89, 91, 95, 97, 99, 103, 105, 107, 111, 113, 115, 119, 121, 123, 127, 129, 131, 135, 137, 139, 143, 145, 147, 151, 153, 155, 159
OFFSET
1,2
COMMENTS
Terms that occur on the first two rows of array A257852. Odd numbers that are not of the form 4k+1, where k is an odd number. - Antti Karttunen, Jun 06 2024
FORMULA
a(n) = (24*n+2*sqrt(3)*sin(2*Pi*n/3)+6*cos(2*Pi*n/3)-15)/9. - Fred Daniel Kline, Nov 12 2015
From Colin Barker, Nov 12 2015: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
G.f.: x*(x^3+4*x^2+2*x+1) / ((x-1)^2*(x^2+x+1)). (End)
a(n+3) = a(n) + 8 for all n in Z. - Michael Somos, Nov 15 2015
a(3k) = 8k-1, a(3k-1) = 8k-5, a(3k-2) = 8k-7. - Wesley Ivan Hurt, Jun 13 2016
a(n) = 8 * floor((n-1) / 3) + 2^(((n-1) mod 3) + 1) - 1. - Fred Daniel Kline, Aug 09 2016
a(n) = 2*(n + floor(n/3)) - 1. - Wolfdieter Lang, Sep 10 2021
EXAMPLE
G.f. = x + 3*x^2 + 7*x^3 + 9*x^4 + 11*x^5 + 15*x^6 + 17*x^7 + 19*x^8 + 23*x^9 + ...
MAPLE
A047529:=n->(24*n+2*sqrt(3)*sin(2*Pi*n/3)+6*cos(2*Pi*n/3)-15)/9: seq(A047529(n), n=1..100); # Wesley Ivan Hurt, Jun 13 2016
MATHEMATICA
Select[Range[150], MemberQ[{1, 3, 7}, Mod[#, 8]]&] (* Harvey P. Dale, May 02 2011 *)
LinearRecurrence[{1, 0, 1, -1}, {1, 3, 7, 9}, 100] (* Vincenzo Librandi, Jun 14 2016 *)
PROG
(PARI) Vec(x*(x^3+4*x^2+2*x+1)/((x-1)^2*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Nov 12 2015
(PARI) {a(n) = n\3 * 8 + [-1, 1, 3][n%3 + 1]}; /* Michael Somos, Nov 15 2015 */
(Magma) [n : n in [0..150] | n mod 8 in [1, 3, 7]]; // Wesley Ivan Hurt, Jun 13 2016
CROSSREFS
Setwise difference A005408 \ A004770.
Disjoint union of A004767 and A017077; see A257852.
Sequence in context: A027897 A027892 A158938 * A359567 A125667 A072939
KEYWORD
nonn,easy
STATUS
approved