OFFSET
1,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
FORMULA
G.f.: x^2*(x+3)*(1+x) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Jul 10 2015
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 8*n/3-2+cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k-1, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)
MAPLE
A047528:=n->8*n/3-2+cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047528(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 3, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 3, 7, 8}, 70] (* Harvey P. Dale, Jun 12 2019 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 3, 7]]; // Wesley Ivan Hurt, Jun 10 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved