[go: up one dir, main page]

login
A047528
Numbers that are congruent to {0, 3, 7} mod 8.
2
0, 3, 7, 8, 11, 15, 16, 19, 23, 24, 27, 31, 32, 35, 39, 40, 43, 47, 48, 51, 55, 56, 59, 63, 64, 67, 71, 72, 75, 79, 80, 83, 87, 88, 91, 95, 96, 99, 103, 104, 107, 111, 112, 115, 119, 120, 123, 127, 128, 131, 135, 136, 139, 143, 144, 147, 151, 152, 155, 159
OFFSET
1,2
FORMULA
G.f.: x^2*(x+3)*(1+x) / ((1+x+x^2)*(x-1)^2). - R. J. Mathar, Jul 10 2015
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = 8*n/3-2+cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k-1, a(3k-1) = 8k-5, a(3k-2) = 8k-8. (End)
MAPLE
A047528:=n->8*n/3-2+cos(2*n*Pi/3)-sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047528(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 3, 7}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 10 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 3, 7, 8}, 70] (* Harvey P. Dale, Jun 12 2019 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 3, 7]]; // Wesley Ivan Hurt, Jun 10 2016
CROSSREFS
Sequence in context: A062863 A194470 A078466 * A069122 A278519 A007970
KEYWORD
nonn,easy
STATUS
approved