[go: up one dir, main page]

login
A047484
Numbers that are congruent to {3, 5, 7} mod 8.
5
3, 5, 7, 11, 13, 15, 19, 21, 23, 27, 29, 31, 35, 37, 39, 43, 45, 47, 51, 53, 55, 59, 61, 63, 67, 69, 71, 75, 77, 79, 83, 85, 87, 91, 93, 95, 99, 101, 103, 107, 109, 111, 115, 117, 119, 123, 125, 127, 131, 133, 135, 139, 141, 143, 147, 149, 151, 155, 157, 159
OFFSET
1,1
FORMULA
G.f.: x*(3+2*x+2*x^2+x^3)/((1-x)^2*(1+x+x^2)). [Colin Barker, May 14 2012]
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. - Vincenzo Librandi, May 17 2012
From Wesley Ivan Hurt, Jun 10 2016: (Start)
a(n) = (24*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3k) = 8k-1, a(3k-1) = 8k-3, a(3k-2) = 8k-5. (End)
a(n) = 3*n - floor((n-1)/3) - ((n-1) mod 3). - Wesley Ivan Hurt, Sep 26 2017
a(n) = 2*(n + floor((n-1)/3)) + 1. - Wolfdieter Lang, Sep 11 2021
MAPLE
A047484:=n->(24*n-3-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047484(n), n=1..100); # Wesley Ivan Hurt, Jun 10 2016
MATHEMATICA
Select[Range[0, 300], MemberQ[{3, 5, 7}, Mod[#, 8]]&] (* Vincenzo Librandi, May 17 2012 *)
PROG
(Magma) I:=[3, 5, 7, 11]; [n le 4 select I[n] else Self(n-1)+Self(n-3) -Self(n-4): n in [1..70]]; // Vincenzo Librandi, May 17 2012
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved