[go: up one dir, main page]

login
A005239
Irregular triangle of Section I numbers. Row n contains numbers k with 2^n < k < 2^(n+1) and phi^n(k) = 2, where phi^n means n iterations of Euler's totient function.
(Formerly M2409)
2
3, 5, 7, 11, 13, 15, 17, 23, 25, 29, 31, 41, 47, 51, 53, 55, 59, 61, 83, 85, 89, 97, 101, 103, 107, 113, 115, 119, 121, 123, 125, 137, 167, 179, 187, 193, 205, 221, 227, 233, 235, 239, 241, 249, 251, 253, 255, 257, 289, 353, 359, 389, 391, 401, 409
OFFSET
1,1
COMMENTS
Sequence A092878 gives the number of terms in row n. Shapiro describes how the numbers x with phi^n(x)=2 can be divided into 3 sections: I: 2^n < x < 2^(n+1), II: 2^(n+1) <= x <= 3^n and III: 3^n < x <= 2*3^n. See A058812 for the numbers x for each n. - T. D. Noe, Dec 05 2007
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B41.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Primes in classes of the iterated totient function, JIS 11 (2008) 08.1.2.
Harold Shapiro, An arithmetic function arising from the phi function, Amer. Math. Monthly, Vol. 50, No. 1 (1943), 18-30.
EXAMPLE
Triangle begins:
3;
5, 7;
11, 13, 15;
17, 23, 25, 29, 31;
41, 47, 51, 53, 55, 59, 61;
83, 85, 89, 97, 101, 103, 107, 113, 115, 119, 121, 123, 125;
...
MATHEMATICA
nMax=10; nn=2^nMax; c=Table[0, {nn}]; Do[c[[n]]=1+c[[EulerPhi[n]]], {n, 2, nn}]; t={}; Do[t=Join[t, Select[Flatten[Position[c, n]], #<2^n&]], {n, nMax}]; t (* T. D. Noe, Dec 05 2007 *)
CROSSREFS
Cf. A135832 (Section I primes).
Sequence in context: A179458 A062086 A283680 * A141107 A047484 A036991
KEYWORD
nonn,tabf
EXTENSIONS
More terms from Jud McCranie, Feb 15 1997
Corrected and extended by T. D. Noe, Dec 05 2007
STATUS
approved