[go: up one dir, main page]

Prijeđi na sadržaj

Dušik

Izvor: Wikipedija
Datum izmjene: 22. decembra 2023. u 04:32; autor/autorica: InternetArchiveBot (razgovor | doprinosi) (Bluelink 1 book for verifiability (20231221)) #IABot (v2.0.9.5) (GreenC bot)
(razlika) ← Starija verzija | Aktualna verzija (razlika) | Novija verzija → (razlika)
Azot (7N)
C - N - O
 
N
P  
 
 

Tečni azot
Tečni azot

Opšti podaci
Pripadnost skupu nemetali
grupa, perioda VA, 2
gustina, tvrdoća 1,2506 kg/m3,
boja bezbojan
Osobine atoma
atomska masa 14,0067 u[1]
atomski radijus 65 (56) pm
kovalentni radijus 75 pm
van der Valsov radijus 155 pm
elektronska konfiguracija [He]2s22p3
e- na energetskim nivoima 2, 5
oksidacioni broj ±3, 5, 4, 2
Osobine oksida jako kiseli
Kristalna struktura heksagonalna
Fizičke osobine
agregatno stanje gasovito[2]
temperatura topljenja 63,14 K
(-210,01 °C)
temperatura ključanja 77,35 K
(-195,8 °C)[3]
molska zapremina 13,54×10-3 m³ /mol
toplota isparavanja 2,7928 kJ/mol
toplota topljenja 0,3.604 kJ/mol[4]
brzina zvuka 334 m/s (298,15 K)
Ostale osobine
Elektronegativnost 3,04 (Pauling)
3,07 (Alred)
specifična toplota 1040 J/(kg*K)
specifična provodljivost bez podataka
toplotna provodljivost 0,02598 W/(m*K)
I energija jonizacije 1402,3 kJ/mol
II energija jonizacije 1402,3 kJ/mol
III energija jonizacije 1402,3 kJ/mol
IV energija jonizacije 7475,0 kJ/mol
V energija jonizacije 9444,9 kJ/mol
VI energija jonizacije 53266,6 kJ/mol
VII energija jonizacije 64.360 kJ/mol
Najstabilniji izotopi

Dušik, azot (franc. azote < lat. azotum < grč. άζωτος: beživotan) ili nitrogen (lat. nitrogenium < grč. νἰτρον: salitra ili niter + γένος: rod), simbol N, hemijski element sa atomskim brojem 7. U periodnom sistemu nalazi se u petoj glavnoj grupi i 2. periodi. Spada u nemetale. U elementarnom obliku dušik postoji isključivo u obliku dvoatomskih molekula (dinitrogen, N2). Sa 78% udjela je jedan od osnovnih sastojaka zraka. U Zemljinoj kori neorganski dušik se javlja rijetko u spojevima; izuzetak su depoziti šalitre.

Tokom evolucije u ekosistemima se formirao ciklus dušika: kao osnovni sastojak bjelančevina i mnogih drugih prirodnih supstanci, dušik je nezamjenjiv za živa bića, a oni ga u svojim energetski intenzivnim životnim procesima (kao što je fiksiranje dušika) vežu i pretvaraju u bioraspoloživi dušik. To se naprimjer dešava pod uticajem enzima u takozvanom željezo-sumpornom klasteru, koji je kofaktor enzima nitrogenaze.

Slavenski naziv dušik dobio je jer guši (duši) disanje i plamen, a slično porijeklo vodi i naziv azot (grč. azotikos - koji ne podržava život). Latinsko ime nitrogen izvedeno je iz starogrčkog νιτρον nitron - soda, šalitra, i γενος genos porijeklo.

Historija

[uredi | uredi kod]
Carl Wilhelm Scheele

Prirodni hemijski spojevi dušika, kao što su nitrati i soli amonijaka, bili su poznati se još u antičko doba kada su ih koristili uglavnom alhemičari. Obje vrste spojeva se mogu, pored svojih prirodnih nalazišta kao minerali, dobiti i iz izlučevina. Tako, naprimjer, stari Egipćani su dobijali amonijum hlorid (salmijak) iz devinog izmeta i a šalitra se dugo vremena dobijala od tla sakupljenog iz štala. Carl Wilhelm Scheele je 1771. godine dokazao da je dušik osnovni sastojak zraka. Čisti amonijak prvi put je dobio engleski hemičar Joseph Priestley 1774. godine. Sve do početka 20. vijeka šalitra je bila jedini veliki izvor dušikovih spojeva. Nakon uvođenja Frank–Carovog procesa (dobijanje kalcij cijanamid koji su razvili Adolph Frank i Nikodem Caro) prvi put je uspješno iskorišten dušik iz zraka. Za dobijanje dušične kiseline Kristian Birkeland i Sam Eyde razvili su proces nazvan po njim Birkeland-Eydeov proces. Ovaj proces je vrlo brzo prevaziđen, a Fritz Haber i Carl Bosch su razvili napredniji Haber-Boschov proces za sintezu amonijaka iz vodika i dušika iz zraka. Pored ovog, razvijen je i katalitički Oswaldov proces po Wilhelm Ostwaldu za pretvaranje amonijaka u dušičnu kiselinu.

Amonijak

[uredi | uredi kod]
Glavni članak: Amonijak

Fritz Haber (1868.-1934.g.), njemački kemičar, s Karlom Boschom ostvario sintezu amonijaka (Haber-Boschova sinteza). Dobio je Nobelovu nagradu 1918.g..

U laboratoriju se amonijak dobiva reakcijom jakih baza s amonijevim spojevima.
Amonijak je uz sumpornu kiselinu najvažniji produkt kemijske industrije, a dobiva se Habber-Boschovim postupkom – katalitičkom sintezom iz elemenata. Reakcija je povratna i egzotermna.
Sirovine za ovu sintezu su jeftine i praktički neiscrpive budući da se dušik dobiva iz zraka, a vodik iz prirodnog plina. Miješanjem dušika i vodika u volumnom omjeru 1:3 dobije se sintezni plin iz kojeg se proizvodi amonijak.

Iz navedenih podataka možemo zaključiti da boljem iskorištenju reakcije pogoduje niža temperatura, a budući da se tijekom reakcije smanjuje broj čestica, iskorištenju reakcije pogoduje viši tlak.
S obzirom na brzinu reakcije i njeno iskorištenje, najpogodniji su uvjeti proizvodnje amonijaka temperatura 550°C i tlak 150-400 bara. Kao katalizator rabi se smjesa željezova i aluminijeva oksida i spojeva alkalijskih metala.

Zagrijavanjem smjese amonijeva klorida i kalcijeva hidroksida, nastaje amonijak, koji dalje pri povišenoj temperaturi reducira bakrov(II) oksid u bakar, dok se amonijak pritom oksidira u elementarni dušik.

Amonijak neutalizacijom s kiselinama daje amonijeve soli, primjerice: NH3 + HCl --> NH4Cl NH3 + HNO3 --> NH4NO3 2 NH3 + H2SO4 --> (NH4)2SO4

Amonijak je redukcijsko sredstvo. Pri povišenoj temperaturi može reducirati neke metalne okside do elemenata.
Amonijeve soli rabe se uglavnom kao mineralno gnojivo.

Dušična kiselina

[uredi | uredi kod]
Glavni članak: Dušična kiselina

Dušična kiselina je uz amonijak najvažniji spoj dušika. Jedna je od najvažnijih industrijskih kiselina i proizvodi se u velikim količinama iz amonijaka. Njemački kemičar i filozof Wilhelm Ostwald (1853.-1932.), jedan je od osnivača fizikalne kemije i utvrdio je uvjete pod kojima se amonijak može u industrijskim količinama prevesti u dušićnu kiselinu. Proces se odvija u tri faze.

U prvoj fazi procesa amonijak se oksidira u bezbojni plin, dušikov(II) oksid.

4 NH3 + 5 O2 --> 4 NO + 6 H2O

Iako je reakcija egzotermna, pri temperaturi 25°C vrlo je spora pa se rabi katalizator (Pt-Rh-mrežica) ugrijan na 900°C. Kod ovakvih uvjeta iskoristivost reakcije je 98%.
U drugoj fazi dušikov(II) oksid reagira s kisikom i nastaje crvenosmeđi plin (dušikov(IV) oksid).

2 NO + O2--> 2 NO2(g)

Treća faza Ostwaldovog procesa je reakcija dušikova(IV) oksida s vodom:

3 NO2 + H2O --> 2 HNO3 + NO

Nastali plinoviti dušikov(II) oksid se okdidira ponovo u dušikov(IV) oksid, reciklira i koristi dalje u procesu proizvodnje. Ovim postupkom dobiva se kiselina masenog udjela 50%. Veća koncentracija kiseline, do 68%, može se dobiti naknadnom frakcijskom destilacijom.
Čista dušićna kiselina (w=100%) je bezbojna hlapljiva tekućina (tv=83°C), neugodna mirisa. Na zraku se, već pri sobnoj temperaturi, pod utjecajem svjetlosti raspada.

4 HNO3 --> 4 NO2(g) + 2 H2O + O2(g)

Zbog nastalog dušikova dioksida oboji se žutosmeđe i naziva se dimeća dušićna kiselina.
Dušićna kiselina je jaka kiselina i jako oksidacijsko sredstvo.

HNO3 --> H+(aq) + NO3-(aq)

Koncentrirana dušićna kiselina zbog jakog oksidacijskog djelovanja pasivira neke metale (primjerice: željezo, aluminij i krom) stvaranjem zaštitne oksidne prevlake. Koncentrirana HNO3 prevozi se u željeznim ili aluminijskim spremnicima.

Reagira sa svim metalima osim zlata, platine, iridija i rodija. Zlato se otapa u smjesi koncetrirane dušićne i klorovodične kiseline volumnog omjera 1:3. Nastalu smjesu nazivamo zlatotopka ili „carska voda“.

Au + 4 HCl + HNO3 --> HAuCl4 + NO + 2 H2O

Koncentrirana dušićna kiselina može osim metala oksidirati i nemetale (primjerice sumpor i fosfor) u odgovarajuće kiseline.

S(s) + 6 HNO3 --> H2SO4 + 6 NO2(g) + 2 H2O P4(s) + 20 HNO3 --> 4 H3PO4 + 20 NO2(g) + 4 H2O

Djelovanjem dušićne kiseline na metale, okside metala, hidrokside i karbonate nastaju soli dušićne kiseline – nitrati koji također djeluju kao oksidansi. Dušićnu kiselinu ubrajamo među najvažnije industrijske kiseline, jer se koristi za dobivanje nitrata, za nitriranje organskih spojeva (koji su često eksplozivni, pa se i rabe kao eksplozivi, npr. trinitrotoluol (TNT) i nitroglicerin), u industriji boja i farmaceutskoj industriji te u proizvodnji mineralnih gnojiva, što je jedna od najvažnijih primjena, itd..

Rasprostranjenost i ciklus dušika

[uredi | uredi kod]

Već u 19. vijeku primijećeno je da veći dio biljne materije sadrži dušik i da je on važni gradivni elemenat svih živih bića. On je jedan od osnovnih elemenata koji grade bjelančevine i bjelančevinaste materije, kao i DNK. Dušik je i osnovni sastojak svih enzima, koji upravljaju metabolizmom kod biljaka, životinja i čovjeka. Stoga je on nezamjenjiv za cjelokupni život na Zemlji.

U zraku

[uredi | uredi kod]

Zemljina atmosfera se sastoji iz 78,09% dušika (po zapreminskom udjelu) odnosno 75,53% po masenom udjelu. Međutim, postoji vrlo malehni broj mikroorganizama koji ga mogu direktno koristiti iz zraka, ugraditi ga u svoju tjelesnu supstancu ili ga prenijeti na biljke. Koliko je poznato, biljke ne mogu direktno koristiti gasoviti dušik iz zraka.[5] Prevođenje dušika u oblik u kojem ga biljke mogu iskorištavati dešava se na neki od sljedećih načina:

  • Pomoću bakterija koje fiksiraju dušik, a žive u korijenju biljaka iz grupe mahunarki (leguminoza). Te bakterije se hrane biljnim asimilatima. Kao protivuslugu daju biljci-domaćinu amonij. On se dobija djelovanjem jednog posebnog enzima, nitrogenaze, trošenjem dosta energije, reduciranjem dušika iz zraka. Takva životna zajednica je simbioza. Omogućava mahunarkama naseljavanje i slabije kvalitetnih zemljišta, što čovjek iskorištava naročito ekološkim načinom poljoprivredne proizvodnje za obogaćivanje tla neophodnim dušikom. Ovdje leguminoze predstavljaju osnovni izvor dušika.
  • Slobodni mikroorganizmi, koji ne žive u simbiozi, daju nesimbiotičke spojeve dušika. Oslanjaju se na sposobnost da takvi mikroorganizmi (naprimjer neke vrste bakterija Azotobacter i cijanobakterije) uzimaju dušik iz atmosfere i grade bjelančevine u vlastitom organizmu. U poljoprivredne svrhe uzima se kalkulativni red veličine stvaranja spojeva iz atmosferskog dušika koje daju nesimbiotski mikroorganizmi od 5-15 kg/ha na godišnjem nivou.
  • Električno pražnjenje pri munjama: U područjima bogatim padavinama, u tlo godišnje može dospjeti 20-25 kg N/ha putem padavina. To se dešava što se pri električnim pražnjenjima tokom munja u zraku spajaju kisik i dušik dajući okside dušika. Oksidi dušika kasnije reagiraju sa vodom dajući dušičnu kiselinu koja zajedno sa kišom pada na tlo. U njemu ona u spoju sa drugim elementima daje nitrate.
  • Sinteza amonijaka: Hemičari Fritz Haber i Carl Bosch razvili su početkom 20. vijeka proces kojim se može dobiti amonijak iz vodika i dušika iz zraka. Po njima nazvan, Haber-Boschov proces omogućio je korištenje neiscrpnih zaliha dušika iz Zemljine atmosfere te je u narednim dekadama taj proces znatno pomogao povećanju prinosa i ekonomičnosti u poljoprivrednoj proizvodnji. Time je također i povećana opskrba hranom stalno rastućeg broja svjetskog stanovništva. Biljke iz apsorbiranog amonijaka proizvode biljne bjelančevine, koje dalje jedući biljnu hranu koriste životinje i čovjek, a služe im za izgradnju vlastitih bjelančevina. U životinjskom i ljudskom organizmu bjelančevine se najvećim dijelom ponovno razgrađuju te se izlučuju izmetom i mokraćom. Procjenjuje se da je do danas u prosjeku gotovo svaki treći atom dušika u biosferi barem jedan put prerađen u industriji vještačkih đubriva.[6]
  • Ispusni gasovi vozila: Sagorijevanjem fosilnih goriva (benzina, diesela i slično), korištenjem motornih vozila u atmosferu se ispuštaju spojevi dušika. Pri procesu sagorijevanja goriva u motorima nastaje dušikovi oksidi (NOx, najviše dušik(IV) oksid, dušik-dioksid NO2, ali i dušik(II) oksid, dušik monoksid, NO u drugi spojevi opće formule NOx). U prošlosti su ti spojevi direktno otpuštani u okolinu, međutim danas većina motornih vozila imaju ugrađene katalizatore, koji reduciraju ove spojeve: NOx se u katalizatorima reducira do amonijaka, koji se dalje u prisustvu vode pretvara u amonij (hemijska ravnoteža amonijaka i amonija u zakiseljenom rastvoru: NH3 + H3O+ ⇔ NH4+ + H2O). Oksidirani spojevi dušika, kao i reducirani spojevi, prenose se zrakom i u značajnoj mjeri utiču na eutrofikaciju okolnih ekosistema.

U tlu

[uredi | uredi kod]

U površinskom obradivom sloju zemljišta nalazi se više od 95% ukupnog dušika u vidu organski vezanog dušika u živoj korijenskoj masi, uginuloj biljnoj masi, humusnim materijama i živim bićima u tlu. Ostatak od manje od 5% je neorganski dušik u obliku amonijaka ili nitrata i u veoma malehnoj količini kao nitriti. Ovaj mineralni udio dušika se određuje u proljeće prije đubrenja Nmin metodom. Ukupna količina dušika u tlu dosta zavisi od udjela ugljika. Na njega može uticati klima, vegetacija, vrsta tla, konfiguracija terena i mjere koje poduzimaju poljoprivrednici, kao što je obrada zemljišta.

U biljkama

[uredi | uredi kod]

Dušik se ugrađuje u proizvode fotosinteze, između ostalog za sintezu bjelančevina i tako omogućava i podržava rast. Među najvažnijim ulogama dušika je ta što je on nezamjenjivi sastojak u građi molekula dezoksiribonukleinske kiseline i hlorofila. U zavisnosti od vrsta, udio dušika u suhoj supstanci iznosi 2-6% odnosno u prosjeku 1,5%.[7] Uzimanje dušika u biljke dešava se u najvećoj mjeri u obliku soli amonija ili nitrata. Nedostatak dušika i dušikovih spojeva u biljaka izaziva simptome kao što su usporeni rast, svijetlozelena boja listova (stariji listovi postaju hlorotični i opadaju prije vremena), preuranjeno cvjetanje i požutjelo lišće. Međutim i prekomjerne količine također izazivaju određene simptome: prekomjerni rast, tamnozeleno lišće, zakasnjelo cvjetanje, biljke su slabije otporne na bolesti i mraz, biljna tkiva postaju spužvasta i mehka i slično.

Dobijanje

[uredi | uredi kod]
Shematski prikaz membranskog procesa

Dušik se danas primarno dobija frakcijskom destilacijom tečnog zraka u postrojenjima za razlaganje zraka po Lindeovom postupku, čime se može dobiti dušik čistoće 99,9999%. Dušik koji sadrži nečistoće ispod 1:109 (1 ppb) zahtijeva dodatne korake za prečišćavanje. Da bi se uklonio zaostali kisik postoje biološke metode koristeći klice riže. Dušik stepena čistoće oko 99% može se dobiti dosta troškovno povoljnije putem višestepene apsorpcije/desorpcije zeolitima. Također postoji metoda decentraliziranog dobijanja dušika putem membranskog procesa. Kod ovog procesa uvodi se zrak pod pritiskom od 5 do 13 bara i propušta se kroz membranu od vještačkih materijala. Difuzijska brzina dušika i argona kroz ovu membranu je mnogo manja od brzina kisika, vode i ugljen-dioksida, te se time struja gasova na unutrašnjoj strani membrane obogaćuje dušikom. Precizno podešavajući brzinu prolaska zraka može se i podešavati čistoća dušika (do 99,995% u manjim količinama, a 99% u industrijskom obimu proizvodnje).

Jedna nešto starija metoda je vezivanje kisika iz zraka zagrijavanjem uglja i nakon toga ispiranjem i uklanjanjem ugljik dioksida koji time nastaje. Kisik iz zraka se također može izdvojiti tako što se zrak pušta preko usijanog bakra ili kroz alkalni rastvor pirogalola odnosno natrij ditionita.

U laboratoriji čisti dušik se može dobiti zagrijavanjem vodenog rastvora amonijum nitrita ili rastvora mješavine amonijum hlorida i natrijum nitrita na oko 70°C:

Alternativno, moguća je i termoliza natrijum azida, koja se koristi za dobijanje spektroskopski čistog dušika.[8]

Laboratorijsko dobivanje dušika

[uredi | uredi kod]

U laboratoriju se dušik najčešće dobiva iz amonijeva nitrita, ili reakcijom zasićenih otopina amonijeva klorida i natrijeva nitrita.

U laboratoriju se dušik jednostavno može dobiti reakcijom amonijeva klorida i natrijeva nitrita prema jednadžbi:

NH4Cl + NaNO2 -> N2(g) + 2H2O + NaCl

NaNO2 + NH4Cl --> NH4NO2 + NaCl

NH4+(aq) + NO2-(aq) --> N2(g) + 2 H2O(I)

Postupak:

U epruvetu s lijevkom za dokapavanje uliti zasićenu otopinu amonijeva klorida, a u lijevak za dokapavanje staviti zasićenu otopinu natrijeva nitrita (u 40 mL vode dodavati NaNO2 dok ne zaostaje talog koji se ne otapa).
Otopina nitrita mora biti svježe pripravljena jer su otopine nitrita nepostojane. Protolitičkom reakcijom nastaje vrlo nepostojana dušikasta (dioksodušična) kiselina koja se raspada disproporcioniranjem).
Otopinu u epruveti zagrijati na vodenoj kupelji do 70°C i tada polagano dokapavati otopinu natrijeva nitrita. Temperaturu treba stalno kontrolirati jer je reakcija u početku spora, a s vremenom sve burnija. Ako je reakcija preburna, ukloniti vodenu kupelj i epruvetu uroniti u hladnu vodu. Razvijeni dušik hvatati u preokrenutu epruvetu, prethodno napunjenu vodom. Nakon što se epruveta napuni dušikom, pod vodom pokriti otvor epruvete staklenom pločicom i epruvetu okrenuti. U epruvetu zatim uroniti zapaljenu svijeću koja se trenutno ugasi, jer dušik ne podržava gorenje.

Osobine

[uredi | uredi kod]

Molekularni dušik je bezbojni gas bez ukusa i mirisa, koji se na veoma niskim temperaturama (−196 °C) kondenzira u bezbojnu tekućinu. Dušik nije mnogo rastvorljiv u vodi (oko 23,2 mg dušika se rastvara u 1 litru vode na 0 °C) i ne gori. Dušik je jedini element u svojoj grupi periodnog sistema koji se može sam sa sobom spajati preko (p-p)π veza.[9] Dužina ove trostruke veze među atomima iznosi 109,8 pm.

Pri električnom pražnjenju u spektralnoj cijevi sa gasom pri potpritisku od oko 5-10 mbar, molekulske orbitale dušika se dovode do emitiranja svjetlosti pobuđivanjem strujom visokog napona od 1,8 kV, jačine 18 mA i frekvencije 35 kHz. Tako se rekombiniranjem ioniziranih molekula gasa emitira karakterističan spektar boja.[10] Kritična tačka dušika se nalazi na [11] temperaturi od −146,95 °C (126,2 K), pri pritisku od 33,9 bar i gustoći 0,314 g/cm3.

Dušik u svojim spojevima uglavnom se spaja kovalentnom vezom. U elektronskoj konfiguraciji 2s2p3 spajanje tri kovalentne veze vodi ka formiranju potpunog okteta. Spojevi, u kojima se javlja ovaj vrsta veze, su naprimjer: amonijak, amini, hidrazin i hidroksilamin. Sami ovi spojevi su trigonalne piramidalne strukture i posjeduju slobodni elektronski par. Preko njega ovi spojevi mogu agirati kao nukleofili i kao baze.

U prirodi rasprostranjeni molekularni dinitrogen N2 je zbog trostruke veze u svojoj molekuli vrlo stabilan i inertan, a sa takvom trostrukom vezom povezana je i visoka energija disocijacije veze od 942 kJ/mol[12]. Zbog toga je po pravilu potrebno dovesti mnogo energije da bi se ove veze prekinule i da bi dušik zatim reagirao sa drugim elementima. Osim toga, također je neophodna i visoka energija aktivacije, koja se opet može smanjiti korištenjem pogodnih katalizatora.

Polimerni dušik

[uredi | uredi kod]

U augustu 2004. naučnici sa Max-Planck instituta za hemiju u Mainzu objavili su da su uspjeli dobiti novi kristalni oblik dušika, takozvani polimerni dušik sa jednostavnom vezom, pod pritiskom od preko 110 GPa pri temperaturi preko 2000 K. Ova modifikacija posjeduje jedinstvenu kubičnu strukturu, takozvanu cubic gauche strukturu (doslovno nezgrapna kocka). Zbog njene izrazito velike nestabilnosti, mogućnosti primjene su joj ograničene, ali moguće je planiranje polimernog dušika naprimjer kao eksploziva ili načina skladištenja energije. U tom slučaju, polidušik bio bio daleko najjači, nenuklearni eksploziv.[13]

Spojevi

[uredi | uredi kod]

Dušik ulazi u sastav mnogih spojeva kao što su naprimjer: amonijak, dušična kiselina, nitrati, nitriti kao i mnogi važni organski spojevi. Spojevi u kojima se nalazi dušik su:

Izotopi

[uredi | uredi kod]

Osim dva prirodna izotopa 14N i 15N, postoji i nekoliko vještačkih izotopa sa masenim brojevima 12 do 19. Njihovo vrijeme poluraspada iznosi između 9,97 minuta i 11 milisekundi. Izotop 15N je otkriven 1929. godine, otkrio ga je Stefan Meiring Naudé a već nekoliko godina kasnije korišten je u terenskim probama 1943. godine, koje su izveli naučnici Norman i Werkman. I danas se ovaj izotop koristi na sličan način za biohemijska ispitivanja razmjene dušika u obradivom sloju zemljišta ili u biljkama, ali i za proučavanje pretvaranja bjelančevina u vidu indikatora. Prirodna koncentracija izotopa 15N u atmosferi iznosi 0,3663%. Obogaćivanje dušika 15N je moguće kao i kod drugih izotopa gasovitih elemenata naprimjer putem termodifuznog odvajanja.

Primjena

[uredi | uredi kod]

Spojevi dušika

[uredi | uredi kod]

Dušik se koristi za sintezu amonijaka (Haber-Boschov postupak) i kalcij cijanamida. Osim toga, spojevi dušika su našli raznoliku primjenu u oblasti organske hemije i služe za proizvodnju vještačkih đubriva.

Stonoteniska lopta od celuloida

Mnogi eksplozivi su spojevi dušika. Oni su zapravo nitro spojevi ili esteri dušične kiseline. Ukoliko u molekulu nekog spoja ima dovoljan broj nitro grupa kao naprimjer u pikrinskoj kiselini, atomi kisika u nitro grupama mogu egzotermno reagirati sa atomima ugljika ili vodika iz iste molekule pobuđivanjem putem udarca ili povećanjem temperature. Time čvrsta supstanca za veoma kratko vrijeme prelazi u gas vrlo visoke temperature, snažno se šireći, rušeći sve oko sebe. Eksplozivi se dakle nalaze u takozvanom metastabilnom stanju. Kod nekih nitro grupa umjesto eksplozije nastaje brzo i nepotpuno sagorijevanje naprimjer kao kod nitroceluloza (među njima i celuloid).

Kao gas

[uredi | uredi kod]
Dušik u cijevi za pražnjenje

Dušik se koristi za punjenje avionskih guma kod velikih aviona. Čisti dušik sprječava da se avionske gume zapale tokom slijetanja ili polijetanja jer se u tim trenucima razvija ogromna toplota.

Dušik služi i kao zaštitni gas pri zavarivanju i kao gas za punjenje lampi. Njegove osobine inertne supstance su od izuzetne važnosti za ovu svrhu. Kao pokretački gas,[14] gas za pakovanje, gas za istiskivanje šlaga, vrhnja i drugih namirnica iz boca, dozvoljen je za upotrebu u prehrambenoj industriji, a označava se E-brojem E941.[15]

Dušik je našao primjenu i u uređajima za točenje pića i sličnih tekućina, kada je zbog građevinskih okolnosti (dugačak transportni put, velika visinska razlika) neophodno povećati pritisak isticanja tekućina. Dušik se u tu svrhu koristi u mješavini sa ugljik dioksidom. Pošto se dušik ne rastvara u piću, piće se može točiti odnosno crpiti pod višim pritiskom bez stvaranja pjene (tj. da se karbonizira). Korištenje dušika za punjenje automobilskih guma je, i pored čestog reklamiranja proizvođača, dosta diskutabilno, jer nije dokazano nikakvo značajnije poboljšanje performansi u odnosu na gume sa običnim zrakom.

Dušična mineralna gnojiva

[uredi | uredi kod]

Dušik, koji je potreban za izgradnju bjelančevina te važnih sastojaka stanične jezgre i protoplazme, većina biljaka uzima iz tla u obliku topljivih amonijevih i nitratnih soli. Samo biljke na čijim korjenčićima se nalaze nitrificirajuće bakterije (grah, grašak, djetelina) mogu koristiti elementaran dušik iz zraka. Životinje i ljudi primaju ga u obliku bjelančevina.

Dušik se vraća u tlo truljenjem biljaka i životinja. Djelovanjem mikroorganizama organski se spojevi razgrađuju preko amina (R-NH2) do amonijaka (NH3), odnosno do amonijevih soli. Specifične vrste bakterija oksidiraju amonijeve soli u nitrite i nitrate. Taj proces nazivamo nitrifikacija. U tlu se zbiva i suprotan proces – denitrifikacija – prelaženje nitratnih i nitritnih iona redukcijom u dušik, koji se ponovo vraća u atmosferu. To znači da u prirodi postoji stalni kružni tok između vezanog dušika u tlu i elementarnog u atmosferi.

Razvojem civilizacije, ljudske potrebe su narušile prirodnu ravnotežu u tlu, pa je potrebno dodavati dušikove apojeve kao mineralna gnojiva. Dušićna gnojiva mogu biti nitratna, amonijeva i amidna. Prirodno nitratno gnojivo je čilska salitra, čija su nalazišta gotovo iscrpljena. Od složenih dušikovih mineralnih gnojiva najviše se koristi KAN – kalcijev amonijev nitrat. Dobiva se iz amonijeva nitrata, vrlo kvalitetnog mineralnog gnojiva koji se zbog eksplozivnosti ne rabi čist, već u smjesi s dolomitom (MgCO3 x CaCO3) ili vapnencem. KAN je naročito pogodno gnojivo za tlo siromašno kalcijem ili magnezijem, kao i za kisela tla.

Najveća hrvatska tvornica mineralnih gnojiva nalazi se u Kutini.

Pri uporabi mineralnih gnojiva valja dodavati samo onoliko gnojiva koliko je tlu potrebno, a to se provjeri nošenjem uzorka tla na analizu. Uporabom suvišnih količina dušićnih gnojiva, povećava se količina nitratnih iona u tlu, a time i u vodama, kamo ih ispiru oborine. Nitratni i nitrirni ioni, kao i amonijak, ne smiju biti prisutni u vodi za piće iznad dozvoljene granice, jer mogu uzrokovati različite zdravstvene tegobe.

U živom organizmu bakterije u probavnom sustavu reduciraju nitratne ione u nitritne, što je uzrokom slabije opskrbe stanica kisikom i oboljenja u male djece.

Reference

[uredi | uredi kod]
  1. Michael E. Wieser, Tyler B. Coplen: Atomic weights of the elements 2009 (IUPAC Technical Report). u: Pure and Applied Chemistry. 2010, str. 1, DOI:10.1351/PAC-REP-10-09-14
  2. Harry H. Binder: Lexikon der chemischen Elemente, S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3
  3. Yiming Zhang, Julian R. G. Evans, Shoufeng Yang: Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks. u: Journal of Chemical & Engineering Data. 56, 2011, str. 328–337, DOI:10.1021/je1011086
  4. „Heat of Fusion of Nitrogen”. Arhivirano iz originala na datum 2015-09-12. Pristupljeno 2015-05-03. 
  5. Do Plants Use Nitrogen Directly From the Air?
  6. M. Schloesser: Mikroorganismen- die größten Chemiker 4. februar 2010.
  7. Lincoln Taiz, Eduardo Zeiger: Physiologie der Pflanzen. Spektrum, Akad. Verlag, Heidelberg/Berlin 2000, ISBN 3-8274-0537-8
  8. G. Brauer (ur.), Handbook of Preparative Inorganic Chemistry 2. izd., vol. 1, Academic Press 1963, str. 457–460.
  9. E. Riedel, C. Janiak (2011). Anorganische Chemie 8. izd.. de Gruyter. str. 464. ISBN 3110225662. 
  10. „Dušik u spektralnoj cijevi”. Arhivirano iz originala na datum 2016-03-05. Pristupljeno 2015-05-03. 
  11. J. Falbe, M. Regitz (ur.): Römpp Chemie Lexikon, 9. izd., Georg Thieme Verlag, Stuttgart 1992.
  12. Holleman, Wiberg: Lehrbuch der Anorganischen Chemie; 102. izd.; de Gruyter Verlag; ISBN 978-3-11-017770-1; str. 653.
  13. Saopćenje za javnost Udruženja Max-Planck 3. august 2004.
  14. Food-info
  15. ZZulV: Pravilnik o dopuštenju korištenja dodataka u prehrani u tehnološke svrhe Arhivirano 2010-10-09 na Wayback Machine-u

Literatura

[uredi | uredi kod]
  • Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New izd.). New York, NY: Oxford University Press. ISBN 978-0-19-960563-7. 
  • Garrett, Reginald H.; Grisham, Charles M. (1999). Biochemistry (2nd izd.). Fort Worth: Saunders College Publ.. ISBN 0-03-022318-0. 
  • Udžbenik za treći razred gimnazije „Anorganska kemija“, Sandra Habuš – Dubravka Stričević – Vera Tomašić. Izdavač: PROFIL INTERNATIONAL, tisak: tiskara Meić, Uporabu udžbenika odobrilo je Ministarstvo prosvjete i športa Republike Hrvatske rješenjem KLASA: *, od 3. Srpnja 1998.g.
  • Hrvatska enciklopedija, Broj 3 (Da-Fo), str. 314.. Za izdavača: Leksikografski zavod Miroslav Krleža, Zagreb 2000.g. ISBN 953-6036-33-9

Vanjske veze

[uredi | uredi kod]