WISERNet: Wider separate-then-reunion network for steganalysis of color images
IEEE Transactions on Information Forensics and Security, 2019•ieeexplore.ieee.org
Until recently, deep steganalyzers in the spatial domain have been all designed for gray-
scale images. In this paper, we propose the wider separate-then-reunion network
(WISERNet) for steganalysis of color images. We provide theoretical rationale to claim that
the summation in normal convolution is one sort of linear collusion attack which reserves
strong correlated patterns while impairs uncorrelated noises. Therefore, in the bottom
convolutional layer which aims at suppressing correlated image contents, we adopt …
scale images. In this paper, we propose the wider separate-then-reunion network
(WISERNet) for steganalysis of color images. We provide theoretical rationale to claim that
the summation in normal convolution is one sort of linear collusion attack which reserves
strong correlated patterns while impairs uncorrelated noises. Therefore, in the bottom
convolutional layer which aims at suppressing correlated image contents, we adopt …
Until recently, deep steganalyzers in the spatial domain have been all designed for gray-scale images. In this paper, we propose the wider separate-then-reunion network (WISERNet) for steganalysis of color images. We provide theoretical rationale to claim that the summation in normal convolution is one sort of linear collusion attack which reserves strong correlated patterns while impairs uncorrelated noises. Therefore, in the bottom convolutional layer which aims at suppressing correlated image contents, we adopt separate channel-wise convolution without summation instead. Conversely, in the upper convolutional layers, we believe that the summation in normal convolution is beneficial. Therefore, we adopt united normal convolution in those layers and make them remarkably wider to reinforce the effect of linear collusion attack. As a result, our proposed wide-and-shallow, separate-then-reunion network structure is specifically suitable for color image steganalysis. We have conducted extensive experiments on color image datasets generated from BOSSBase raw images and another large-scale dataset that contains 100, 000 raw images, with different demosaicking algorithms and down-sampling algorithms. The experimental results show that our proposed network outperforms other state-of-the-art color image steganalytic models either hand crafted or learned using deep networks in the literature by a clear margin. Specifically, it is noted that the detection performance gain is achieved with less than half the complexity compared to the most advanced deep-learning steganalyzer as far as we know, which is scarce in the literature.
ieeexplore.ieee.org