[go: up one dir, main page]

Suivre
Tejaswini Pedapati
Tejaswini Pedapati
IBM Research
Adresse e-mail validée de us.ibm.com
Titre
Citée par
Citée par
Année
A Survey on Neural Architecture Search
M Wistuba, A Rawat, T Pedapati
arXiv preprint arXiv:1905.01392, 2019
3772019
Foresight: Recommending visual insights
Ç Demiralp, PJ Haas, S Parthasarathy, T Pedapati
Proceedings of the VLDB Endowment 10 (12), 1937-1940, 2017
164*2017
Model Agnostic Contrastive Explanations for Classification Models
A Dhurandhar, T Pedapati, A Balakrishnan, PY Chen, K Shanmugam, ...
IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2024
84*2024
Understanding unequal gender classification accuracy from face images
V Muthukumar, T Pedapati, N Ratha, P Sattigeri, CW Wu, B Kingsbury, ...
arXiv preprint arXiv:1812.00099, 2018
612018
Learning Global Transparent Models Consistent with Local Contrastive Explanations
T Pedapati, A Balakrishnan, K Shanmugam, A Dhurandhar
Advances in Neural Information Processing Systems 33, 2020
382020
Learning to Rank Learning Curves
M Wistuba, T Pedapati
International Conference on Machine Learning, 10303-10312, 2020
282020
Contrastive Explanations for Comparing Preferences of Reinforcement Learning
J Gajcin, R Nair, T Pedapati, R Marinescu, E Daly, I Dusparic
AAAI Conference on Artificial Intelligence, 2022
14*2022
Creating optimized machine-learning models
G Thomas, ACI Malossi, T Pedapati, G Venkataraman, R Istrate, ...
US Patent App. 16/216,138, 2020
142020
LakeBench: Benchmarks for Data Discovery over Data Lakes
K Srinivas, J Dolby, I Abdelaziz, O Hassanzadeh, H Kokel, A Khatiwada, ...
arXiv preprint arXiv:2307.04217, 2023
132023
CoFrNets: interpretable neural architecture inspired by continued fractions
I Puri, A Dhurandhar, T Pedapati, K Shanmugam, D Wei, KR Varshney
Advances in neural information processing systems 34, 21668-21680, 2021
132021
Inductive Transfer for Neural Architecture Optimization
M Wistuba, T Pedapati
arXiv preprint arXiv:1903.03536, 2019
132019
NeuNetS: An Automated Synthesis Engine for Neural Network Design
A Sood, B Elder, B Herta, C Xue, C Bekas, ACI Malossi, D Saha, ...
arXiv preprint arXiv:1901.06261, 2019
132019
AutoText: An End-to-End AutoAI Framework for Text
A Chaudhary, A Issak, K Kate, Y Katsis, A Valente, D Wang, A Evfimievski, ...
Proceedings of the AAAI Conference on Artificial Intelligence 35 (18), 16001 …, 2021
92021
Survey on automated end-to-end data science?
D Bouneffouf, C Aggarwal, T Hoang, U Khurana, H Samulowitz, ...
2020 International Joint Conference on Neural Networks (IJCNN), 1-9, 2020
92020
Dataset evolver: An interactive feature engineering notebook
F Nargesian, U Khurana, T Pedapati, H Samulowitz, D Turaga
Proceedings of the AAAI Conference on Artificial Intelligence 32 (1), 2018
82018
Extracting Patient Information from an Electronic Medical Record
JJ Liang, T Pedapati, JM Prager
US Patent App. 15/403,363, 2018
72018
Neurology-as-a-Service for the Developing World
T Dharamsi, P Das, T Pedapati, G Bramble, V Muthusamy, H Samulowitz, ...
arXiv preprint arXiv:1711.06195, 2017
72017
MILO: Model-Agnostic Subset Selection Framework for Efficient Model Training and Tuning
K Killamsetty, AV Evfimievski, T Pedapati, K Kate, L Popa, R Iyer
arXiv preprint arXiv:2301.13287, 2023
62023
Model agnostic contrastive explanations for structured data
A Dhurandhar, PY Chen, K Shanmugam, T Pedapati, A Balakrishnan, ...
US Patent 11,507,787, 2022
52022
From PEFT to DEFT: Parameter Efficient Finetuning for Reducing Activation Density in Transformers
B Runwal, T Pedapati, PY Chen
arXiv preprint arXiv:2402.01911, 2024
42024
Le système ne peut pas réaliser cette opération maintenant. Veuillez réessayer plus tard.
Articles 1–20