A new Lagrange multiplier approach for gradient flows Q Cheng, C Liu, J Shen Computer Methods in Applied Mechanics and Engineering 367, 113070, 2020 | 132 | 2020 |
Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model Q Cheng, J Shen SIAM Journal on Scientific Computing 40 (6), A3982-A4006, 2018 | 116 | 2018 |
Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach Q Cheng, J Shen, X Yang Journal of Scientific Computing 78, 1467-1487, 2019 | 85 | 2019 |
Efficient and accurate numerical schemes for a hydro-dynamically coupled phase field diblock copolymer model Q Cheng, X Yang, J Shen Journal of Computational Physics 341, 44-60, 2017 | 81 | 2017 |
Error estimate of a second order accurate scalar auxiliary variable (SAV) scheme for the thin film epitaxial equation Q Cheng Advances in applied mathematics and mechanics, 2021 | 48 | 2021 |
A new Lagrange multiplier approach for constructing structure preserving schemes, II. Bound preserving Q Cheng, J Shen SIAM Journal on Numerical Analysis 60 (3), 970-998, 2022 | 42 | 2022 |
Global constraints preserving scalar auxiliary variable schemes for gradient flows Q Cheng, J Shen SIAM Journal on Scientific Computing 42 (4), A2489-A2513, 2020 | 42 | 2020 |
A new Lagrange multiplier approach for constructing structure preserving schemes, I. Positivity preserving Q Cheng, J Shen Computer Methods in Applied Mechanics and Engineering 391, 114585, 2022 | 39 | 2022 |
Generalized SAV approaches for gradient systems Q Cheng, C Liu, J Shen Journal of Computational and Applied Mathematics 394, 113532, 2021 | 37 | 2021 |
The generalized scalar auxiliary variable approach (G-SAV) for gradient flows Q Cheng Journal of Computational and Applied Mathematics 394, 113532, 2021 | 13 | 2021 |
A new interface capturing method for Allen-Cahn type equations based on a flow dynamic approach in Lagrangian coordinates, I. One-dimensional case Q Cheng, C Liu, J Shen Journal of Computational Physics 419, 109509, 2020 | 9 | 2020 |
Length Preserving Numerical Schemes for Landau–Lifshitz Equation Based on Lagrange Multiplier Approaches Q Cheng, J Shen SIAM Journal on Scientific Computing 45 (2), A530-A553, 2023 | 7 | 2023 |
Second order approximation for a quasi-incompressible Navier-Stokes Cahn-Hilliard system of two-phase flows with variable density Z Guo, Q Cheng, P Lin, C Liu, J Lowengrub Journal of Computational Physics 448, 110727, 2022 | 7 | 2022 |
Unique solvability and error analysis of the Lagrange multiplier approach for gradient flows Q Cheng, J Shen, C Wang arXiv preprint arXiv:2405.03415, 2024, 2024 | 2 | 2024 |
Modeling and simulation of cell nuclear architecture reorganization process Q Cheng, P Delafrouz, J Liang, C Liu, J Shen Journal of computational physics 449, 110808, 2022 | 2 | 2022 |
Global constraints preserving SAV schemes for gradient flows Q Cheng, J Shen SIAM Journal on Scientific Computing 42 (4), A2489-A2513, 2019 | 2 | 2019 |
A new flow dynamic approach for Wasserstein gradient flows Q Cheng, Q Liu, W Chen, J Shen Journal of Computational Physics, 2024 | 1 | 2024 |
Corrigendum: A New Lagrange Multiplier Approach for Constructing Structure-Preserving Schemes, II. Bound Preserving Q Cheng, J Shen SIAM Journal On Numerical Analysis 62 (6), pp.2784-2787, 2024 | | 2024 |
Computing optimal partition problems via Lagrange multiplier approach Q Cheng, J Guo, D Wang Journal of Scientific Computing 102 (22), 2024 | | 2024 |
A new class of energy dissipative, mass conserving and positivity/bound-preserving schemes for Keller-Segel equations Z Fang, Q Cheng https://doi.org/10.48550/arXiv.2411.13067, 2024 | | 2024 |