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ABSTRACT 

Technology is becoming omnipresent in our lives due to its 
accessibility and ease of use. Conversational agents facilitate 
interactions in natural language and are frequently employed 
to perform repetitive tasks in a specific context. We 
introduce a conversational agent for Romanian built on top 
of the open-source RASA framework, capable to 
communicate in predefined microworlds. Two scenarios 
were considered, namely: a smart home assistant which 
interprets commands to IoT devices, and an interactive info-
point for our university focusing on providing guidance to 
students. Several enhancements were considered, including 
an NLP pre-processing pipeline from spaCy and a 
knowledge graph implemented using Grakn for 
conceptualizing the information accessible to the agent. Our 
agent can quickly classify intents and extract entities with 
high accuracy for a given microworld (F1-score of 97% for 
the first microworld and 93% for the second). A survey on 
10 users showed high satisfaction in terms of the usefulness 
and the succinctness of the provided information. 
Author Keywords 
Conversational agent; Natural Language Understanding; 
Romanian language; Microworlds. 
ACM Classification Keywords 

H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces.
I.2.7 Natural Language Processing: Discourse, Language
parsing and understanding, Text analysis
General Terms 

Natural Language; Text analysis. 

INTRODUCTION 
Internet of Things (IoT) is a concept that has grown in 
popularity during the last years due to its utility; numerous 
day to day objects, such as lightbulbs, can be connected to 
the Internet and can be switched on and off remotely. 
Another advantage of IoT is that the interaction with physical 
objects can be performed using text or voice commands. 
Conversational agents are systems that mimic characteristics 
of human interactions and can have unstructured 

conversations usually meant to provide information or 
entertainment to users. Conversational agents are frequently 
employed in many domains and businesses, such as customer 
support, sales, marketing, and counseling. 
There are multiple frameworks that can be used for 
implementing conversational agents, but they are mostly 
available for wide-spread languages, such as English, 
French, or German. However, there is little to no support for 
less-spread languages, such as the Romanian language. 
This article introduces a conversation agent for Romanian 
language, capable to communicate in specific contexts (i.e., 
microworlds). The agent understands intents from the user's 
input and responds accordingly in Romanian. Note that the 
methods presented here can be extended to other languages, 
as well. A microworld can be described as a part of the entire 
world where the agent lives. It knows the rules governing this 
small world, can interact with individuals by following those 
rules, but going outside this context will dramatically 
decrease the quality of the conversation or even making it 
inconsistent. Our conversational agent focuses on two 
different microworlds: 1) a home assistant responsible for 
controlling IoT appliances available in user’s residence; 2) a 
university info-point to provide student orientation (e.g., 
guidance on the location of classes or of academic staff). 
Two important aspects need to be taken into account when 
building conversational agents: a) intent classification – i.e., 
the agent should be able to understand what users are saying 
or what are their interests; and b) entities detection – i.e., the 
agent needs to detect key components from the user’s 
sentence and request missing information. For example, if 
the user asks "What will be the temperature tomorrow?" the 
system should be able to understand that the question is about 
the temperature and also to extract the entities "temperature" 
and "tomorrow" so that it can respond with the missing 
information, the actual temperature. 
This paper continues with a presentation of the commonly 
used frameworks for building a chatbot. The following 
section describes the used corpora, alongside the method 
employed for building our agent. The paper continues with 
results in terms of performance and a user survey, followed 
by conclusions and future leads meant to improve the overall 
capabilities of the system. 
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RELATED WORK 

Snips [5] is a lightweight dynamic processing pipeline 
implemented in Rust [20] and Python. Snips can be easily 
integrated with IoT devices that have limited local resources. 
Nenciu et al. [16] have extended its pipeline to provide 
support for the Romanian language. 
RASA [2] is a mature open-source framework which 
contains two main components: RASA Natural Language 
Understanding (NLU) and RASA Core. The first component 
is responsible for intent classification and entity detection, 
whereas the second is the dialogue engine which can be used 
to implement the conversational agent. 
The approach of identifying the intent, as well as discovering 
corresponding entities, can be performed separately or 
together. The state of the art model for this task is DIET 
(Dual Intent and Entity Transformer) [3] implemented in 
RASA. The model tackles the two problems together and can 
be trained six times faster than other models, while ensuring 
accurate results for intent classification and entity 
recognition. As seen in Figure 1, the DIET model can also 
receive as input pretrained word vectors from BERT [7], 
ConveRT or GloVe [17]. 

Figure 1. High level illustration of DIET [18]. 

SpaCy [12] integration is another valuable asset for RASA, 
especially for low resource languages, such as Romanian. 
SpaCy is a Natural Language Processing (NLP) tool that 
provides a common interface for processing all integrated 
languages. SpaCy can be used to perform part of speech 
tagging and dependency parsing, whereas these additional 
insights can help the RASA pipeline provide more accurate 
results.  
In past years, various approaches for simultaneous intent 
classification and entity recognition have been researched 
and published. One of the oldest approach was described by 
Zhang and Wang [26], who used joint models built using 
Gated Recurrent Unit (GRU) [4], where the hidden state was 
used for both tasks; their approach managed to outperform 
the state-of-the-art solutions of that time. 
A more recent approach for dual intent classification intent 
and entity extraction architecture was proposed by Vanzo et 
al [22] who used both a self-attention mechanism [23] and 
bidirectional Long Short Term Memory (LSTM) layers [11]. 
They managed to score better than older versions of Rasa, 
Dialogflow [8] and LUIS [15]. 

All previously specified frameworks are focusing on a task-
oriented dialogue system. As described by [1] Almansor and 
Hussain [1], those kinds of systems are solving a specific 
problem or live in a specific context; this is the reason for 
being commonly desired by companies. As stated by 
Sandbank et al. [21], around 80% of interviewed companies 
want to migrate to this type of solutions in 2020 due to their 
utility when interacting with a client. The development of 
such systems is quite straightforward, involving predefined 
rules and pre-scripted conversations. 
For more generic chat bots that are not task-oriented, more 
advanced solutions are required while relating to their usage 
scenarios. For example, a chit-chat bot can have issues such 
as: it can lack specificity, the personality it exposes can be 
inconsistent, or it can become boring with standard and 
repetitive responses [25]. State of the art models (e.g., 
TransferTransfo [24]) for this type of bots consists of 
approaches using transfer learning and Transformer-based 
models [23]. 

METHOD 

Corpus 

In general, chatbots are task-specific, meaning that they can 
handle requests from a predefined microworld. This implies 
that a specific corpus has to be created for each experiment. 
Two microworlds were explored in this study, namely: a 
smart home assistant and an interactive info-point for our 
university. The first corpus was manually created, and it 
contains 250 sentences on 35 possible intents (see Figure 2 
for sample statements). We can further categorize the intents 
into 12 actions, such as asking about the calendar of the day 
or controlling home devices. One issue with this corpus was 
that two intents could have very similar forms, where only 
one word is different (e.g., "turn the music up" versus "turn 
the music down"), making it difficult for a model to 
differentiate between intents. 

Figure 2. Sample phrases for the first microworld.

The second corpus (see Figure 3) was designed for the 
university info-point and it consists of both manual and 
automatically generated sentences. First, we developed a list 
of entities that can appear in a sentence, such as: name of 
course subjects (e.g., "Object Oriented Programming", 
"Electronics"), name of classrooms (e.g., "EG105"), name of 
teachers, among others. Second, we manually created 
sentences that had placeholders for the previously mentioned 
entities. Third, we generated sentences by randomly 

# setTemperature intent 
- Setează temperatura la [roomTemperature](19

degrees) în [room](bedroom)
- Poți crește temperatura la [roomTemperature](22

degrees)?
# getRecipe intent 
- Spune-mi rețeta pentru [recipe](pizza).
- Găsește-mi rețeta pentru [recipe](clătite).
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selecting entities from the specific sets. Given this approach, 
we generated 80 sentences representing 11 actions which 
were more different from each other in comparison to the 
home assistant corpus. 

Figure 3. Sample phrases for the second microworld. 

Architecture 

The proposed pipeline uses Rasa NLU and corresponding 
components, and combines them into a new pipeline which 
offers support for Romanian. We rely on the spaCy model 
integrated in the ReaderBench framework [6] to perform 
dependency parsing and part of speech tagging. Figure 4 
introduces the overarching pipeline from RASA that relies 
on spaCy to parse the user query. 

The most important components from the NLU engine are 
the tokenizers – which split the input phrase into smaller 
semantical units (i.e. words), featurizers – which convert the 
words into float vectors, and intent classifiers and entity 
extractors – which in this case are handled all at once by the 
DIET component. Initial releases of RASA used only a 
simple CRF (Conditional Random Field) [14], which had 
problems when the number of training sentences was large 
(hundreds). DIET has a Transformer-base architecture [23] 
that uses multiple consecutive CRFs; thus, the new model is 
no longer susceptible to the initial problems. 
Additional relevant Romanian resources integrated in our 
agent include the DexOnline.ro database, a popular 
Romanian dictionary. The dictionary itself provides a 
comprehensive list of word definitions, alongside with word 
types, popularity, and inflections. Our Romanian resource 
files consists the following: 
• Top 10,000 most used words, together with their

corresponding inflections;
• Top 2,000 verbs and lexemes;
• Stop words (i.e., words having no contextual

information);
• Randomly generated word lists (i.e., noise used for data

augmentation and training the intent classifier);
• Over 1000 of Romanian texts relevant for our

microworld scenarios: books, news article, Wikipedia
pages.

Figure 4. The RASA pipeline integrated with spaCy.

Dialog Management 

A dialog manager is responsible for the flow of the dialog 
between the user and the conversational agent. Figure 5 
introduces the steps for the dialog manager, which takes the 
output of the NLU component, updates the current state of 
the dialog, the user’s history, as well as other important 
information, and outputs instructions for the response 
selector. 
The input to the dialog manager is a human utterance, 
converted to its semantic representation by going through the 
intent classification and the entity extraction process. For 
example, a question like “Unde găsesc cursul de programare 
orientată pe obiecte?” (eng. “Where do I find the Object 

Oriented Programming class?”) will be transformed to a 
query like “find(class=’OOP’)”. As the input is too 
ambiguous, the dialog management will try to find relevant 
user information, such as their class name. Furthermore, the 
knowledge base is queried for information about that specific 
class and its name. Finally, the agent will output an 
instruction like “class_location (class_name=’2CB’, 
class=’OOP’, room=’PR001’)” which is outputted into 
natural language: “Cursul de programare orientată pe obiecte 
pentru seria 2CB se ține în sala PR001 la ora 18:00.” (eng. 
“The Object Oriented Programming course for the 2CB 
series takes place in room PR001 at 18:00.”). 

## find_schedule_with_course 
- Unde se desfășoară cursul de [Metode

Numerice](course)?
- Spune-mi, te rog, în ce sală pot participa la

[Algoritmi Paraleli și Distribuiți](course)
## find_schedule_with_class_and_class_type 
- Unde se ține [laboratorul](class_type) pentru

grupa [311CB](group_name)?
- Unde se ține [cursul](class_type) pentru seria

[CB](group_name)?
## find_schedule_with_course_and_class_and_class_type 
- Unde se ține [cursul](class_type) de

[Engleză](course) pentru grupa
[321CC](group_name)?
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Figure 5. Dialog management architecture. 

Intent Classification and Entity Extraction 

The first step of every conversation consists of waiting for 
user’s input, which is a characteristic specific to any dialog 
management system, followed by classifying and extracting 
entities using DIET. One improvement that can occur at this 
stage and might be implemented in the future consists of 
transforming the extracted entities into machine readable 
representations (e.g., “mâine la 8” / eng. “tomorrow at 8” 
could be converted to a timestamp). 
Context Tracking 

User history or previous states must be maintained between 
queries and replies for conversations to become stateful. For 
this purpose, a small knowledge base called a “tracker” is 
built and stored in an in-memory data structure offered by a 
Redis [19] backend. When a new session starts, a token is 
randomly generated, which is afterwards passed along with 
each parsed input. For an even better tracking, the user’s 
username, name, or any form of identification can be passed. 
In the context of the university chatbot, the tracker can fetch 
information about courses and other public information after 
an initial authentication which consists of stating your name. 
Response Handling 

Response handling is the last, but one of the most important 
components in building conversational agents. It takes all the 
information that has been parsed by the NLU engine and 
previous information held by the tracker, and builds a 
meaningful answer. There are multiple alternatives in which 
an agent can produce a reply, which can even involve natural 
language generation. However, we focused on two simpler 
techniques: predefined responses and custom actions. 
Predefined Responses. The agent can also be trained to 
associate arrays of predefined responses with intents similar 
to how it is trained with various input phrases and queries, 
Moreover, responses do not need to be static, in the sense 
that the sentences may differ for a set of queries. The 
simplest strategy for making the conversation more human-
like is to define multiple responses for the same intent and 
randomly select one of those. In addition, placeholders can 
be automatically replaced based on the extracted entities. For 

example, if the user greets the agent, then it replies with a 
greeting as well. A common interaction could be started by 
the user with a “Hei!” (eng. “Hey!” message, while the agent 
would respond with “Hei. Cu ce te pot ajuta?” (eng. “Hey! 
How may I help you?”). 
Custom Actions. Conversational agents can reply using a 
custom action implemented in a given programming 
language that follows an imposed application logic. The 
usual problem with this approach is that the interactions 
often seem unnatural, as there is very little nondeterminism 
or randomness in the output. For this specific reason, custom 
actions may be combined with predefined responses to reply 
to the user. Another use case for custom actions is when 
additional information is needed from the user, or when third 
party APIs are queried.  
Knowledge Representation 

Our conversational agent needs to store and retrieve relevant 
information, as well as the context of a discussion to respond 
to the user’s input. We opted for a non-relational database – 
Grakn [9] –, an open-source knowledge graph representation 
that provides an excellent fit for systems operating with 
highly interconnected data. Grakn provides a concept-level 
schema which implements the Entity-Relationship model 
and provides reasoning capabilities. Figure 6 introduces the 
model corresponding to our second microworld scenario. 
The agent can perform slot filling tasks by using Graql [10], 
Grakn’s Reasoning and Analytics Query Language, in order 
to properly continue the conversation with the user.  

Figure 6. Grakn knowledge graph for the university info-point. 

One of the most important and complex parts of the agent 
while considering the second micro-world relates to 
navigation queries. The difficulty of answering navigation-
related queries comes not only from the absence of a 
localization system, but also from the fact that a long list of 
steps may be too difficult to remember. Thus, the agent 
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attempts to describe the destination using the surrounding 
environment, points of interest, or any other information that 
the user may already have. Some directions, such as the floor 
where the room is found, are more important than others, 
which describe minor details from the surrounding area (see 
Figure 7). 

Figure 7. Schema definition for a point of interest. 

Sample conversation 

Figure 8 introduces a sample conversation between a user 
and our conversational agent. 

RESULTS 

Performance 
The training of our agent for each microworld was done on 
80% of the corpus; the remaining 20% was used for testing. 
Although the number of examples is small, this is not a 
problem due to the characteristics of a microworld which is 
self-contained, and it considers similar ways to express an 
intent. The considered metric for assessing the performance 
of our system was the F1-score.  
The first microworld contained 203 phrases belonging to 35 
categories, while our test suite contained 94 phrases from the 
same categories. The system achieved a 97% F1-score with 
the corresponding confusion matrix from Figure 9. The 
confusion matrix itself shows promising results and most test 
phrases were correctly classified. Some pairs of intents 
which were difficult to classify consist of: “playSong” with 
“previousSong”, or “volumeUp” with “volumeDown. For 
example, “previousSong” had the lowest F1 scores of 75%, 
partially because it is an intent with very few phrases which 
can be mixed up with “playSong”. This is somewhat 
expected, given how similar two inputs are, with the only 
difference between them being “on” versus “off”. In a 

production environment, we recommend keeping logs for 
intents and periodically updating the dataset to further 
increase the system’s accuracy and its performance. This can 
be either done automatically by using clustering algorithms 
or by manually curating the logs. 

Figure 8. Sample conversation between a human (left side) and 
our agent (right side). 

The second microworld contains 80 phrases belonging to 11 
intents, and our test set contained 27 phrases covering all 
intents. This microworld included eight predefined dialogs 
using 23 responses from 9 categories. The predefined dialogs 
and responses were used to train the response selector. The 
agent achieved a 93% F1-score and the corresponding 
confusion matrix is depicted in Figure 10. 

floor sub attribute, 
 datatype string; 

room sub entity, 
 has name, 
 has floor, 
 plays location; 

direction sub attribute, 
 datatype string; 

map sub relation, 
 relates location, 
 has direction; 

$pr-001 isa  room, has name "PR 001", has floor 
"parter"; 

$map-pr-001 (location: $pr-001) isa map, 
 has direction "vis-a-vis de grupurile sanitare", 
 has direction "accesibil din holul principal"; 
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Figure 9. Confusion matrix for the first microworld (home assistant).

Fewer problems are identified since the training dataset was 
stricter, with fewer categories and with little overlap between 
the intents. We notice that the “find schedule with course and 
class and class type” intent is overlapped with “find schedule 
with class and class type” (without the actual “class”); 
nevertheless, this does not matter in practice because both 
intents are handled by the same action. Therefore, the end the 
user receives the same expected answer. 
In addition, the agent has to provide near real-time responses 
to ensure the flow of the conversation. We achieved response 
times of less than two milliseconds, which can guarantee the 
naturalness of the conversation. 
User Survey 

The NLU engine was evaluated using a small group of 10 
undergraduate and Master degree students from our 
university who queried the conversational agent for 
information, using the second microworld scenario. The 
users were afterwards asked to rate their interaction on a 
Likert scale from 1 to 10 based on the following criteria: 
1. How useful was the information? (1 – “Not usefully at

all”; 10 – “Extremely useful”; M = 9.00, SD =0.77);

2. How pleasant was the interaction? (1 – “Completely
unpleasant”; 10 – “Extremely pleasant interaction”;
M = 9.40, SD =0.77);

3. Have you ever considered the other conversation party
was a machine? (1 – “I thought I was talking with a
person”; 5 – “I cannot say”; 10 representing “I knew that
I was talking with a chat bot” M = 5, SD =0.87).

The Intraclass Correlation Coefficient [13] is 0.888, which 
suggests strong agreement between the replies to the survey. 
All individuals found the information to be very useful, with 
a high user satisfaction (9 on a 10-point scale). Most users 
were satisfied in terms of the quality and the succinctness of 
the information. The less satisfied users reported they were 
looking for additional information and they would have 
preferred to avoid the necessity of a secondary query. While 
relating to the pleasantness of the conversation, part of the 
users considered the agent should have included some chit-
chat messages, while others considered it to be a very 
pleasant and the dialog was natural; thus, the low ratings to 
the last question. 
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Figure 10. Confusion matrix for the second microworld (university info-point).

CONCLUSION 
This paper introduced an NLU engine for Romanian built on 
top of RASA, capable to quickly classify intents and extract 
entities with high accuracy for a given microworld. The 
results are promising for small microworlds that contain a 
limited number of phrases used to express an intent, and most 
alternatives are similar. We are working towards building 
and testing on a larger corpus, which should result in a more 
general system. 
In contrast to close source alternatives, our project runs 
locally, and it requires few resources after the DIET classifier 
was trained. Intent classifying with an external service could 
be easier to implement, but the processing would take a 
considerably longer time because even the ideal round trip 
time could already be over 20 times slower than the usual 
processing time of our engine (1-2ms). 
We consider that an important improvement for the NLU 
engine consists of integrating advanced language models 
(e.g., a Romanian BERT model), which would expand 
further the agent’s capability across microworlds. In 
addition, we plan to expand our research to corpus-based 
architectures to ensure more natural conversations. 

Another interesting area of research relates to the 
classification of multiple intents from a single user 
statement. In real world situations, we often find ourselves 
building complex phrases containing multiple actions. The 
current system returns only the most probable action or none, 
if no probability is greater than the imposed threshold. In 
tight correlation to the previous research lead of using the 
agent in real-life scenarios, our approach was evaluated 
independently from a speech-to-text engine, which would 
induce additional errors; however, our training set only 
contains correct phrases, with no spelling errors. Thus, 
additional fine-tuning, integration of correction mechanisms, 
and extensive testing are required. 
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