[go: up one dir, main page]

KIT | KIT-Bibliothek | Impressum | Datenschutz

Reducing memory footprints in purity estimations of volumetric DDoS traffic aggregates

Heseding, Hauke 1,2; Krack, Timon 1,2; Zitterbart, Martina 1,2; Seufert, Michael [Hrsg.]; Blenk, Andreas [Hrsg.]; Landsiedel, Olaf [Hrsg.]
1 Institut für Telematik (TM), Karlsruher Institut für Technologie (KIT)
2 Karlsruher Institut für Technologie (KIT)

Abstract:
Distinguishing between attack and legitimate traffic in volumetric DDoS scenarios is challenging. Hierarchical Heavy Hitter algorithms can efficiently monitor high-volume traffic aggregates, but provide no insight into traffic composition. Monitoring complementary traffic features enables classification of traffic aggregates with machine learning, but increases the memory footprint of Hierarchical Heavy Hitter algorithms. Since the performance of these algorithms depends on the efficiency of memory usage, we evaluate feature importance to find a compact feature set for accurate distinction of legitimate and attack traffic.


Postprint Creative Commons Namensnennung 4.0 International" data-placement="top" data-original-title="Lizenzinformation" style="z-index:10;float:right;padding-right:5px;cursor:help"> §
DOI: 10.5445/IR/1000165551
Veröffentlicht am 26.08.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Telematik (TM)
Kompetenzzentrum für angewandte Sicherheitstechnologie (KASTEL)
Publikationstyp Proceedingsbeitrag
Publikationsdatum 04.09.2023
Sprache Englisch
Identifikator KITopen-ID: 1000165551
HGF-Programm 46.23.01 (POF IV, LK 01) Methods for Engineering Secure Systems
Erschienen in 2nd Workshop on Machine Learning & Netwoking (MaLeNe) Proceedings. Co-located with the 5th International Conference on Networked Systems (NetSys 2023), Potsdam, Germany. Ed.: . Seufert
Veranstaltung 2nd Workshop "Machine Learing & Networking" Proceedings Co-Located with the "International Conference on Networked Systems" (MaLeNe/NETSYS 2023), Potsdam, Deutschland, 04.09.2023
Verlag Universität Augsburg
Externe Relationen Abstract/Volltext
Schlagwörter Distributed denial of service, hierarchical heavy hitters, machine learning, feature importance
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page