[go: up one dir, main page]

Função zeta de Riemann

função analítica

A função zeta de Riemann é uma função especial de variável complexa, definida para pela série

Função zeta de Riemann em um plano complexo

Fora do conjunto dos números complexos com parte real maior do que a unidade a função de Riemann pode ser definida por continuação analítica da expressão anterior. O resultado é uma função meromorfa com um pólo em de resíduo

Esta função é fundamental para a teoria dos números e em particular devido à hipótese de Riemann.

História

editar

A primeira vez que esta função surgiu foi no trabalho de Leonhard Euler, que, ao estudar a distribuição dos números primos, mostrou que a série   era uma série divergente (o que, como corolário, é mais uma prova de que existem infinitos números primos).[1]

A prova de Euler se baseou na identidade   em que o produto percorre todos os números primos.[1]

Euler e, mais tarde, Pafnuti Tchebychev, haviam usado esta identidade, respectivamente, para s igual a um e para s real. Riemann, em 1858, tratou s como uma variável complexa, e estudou a série   por técnicas da teoria das funções analíticas. Esta série converge apenas em parte do plano complexo, mas define, por continuação analítica, uma função única para todos os números complexos,[Nota 1] exceto para o polo em s = 1. Riemann usou a letra grega zeta para escrever esta função, e por causa disto ela é chamada função zeta de Riemann.[2]

Riemann anunciou várias propriedades importantes desta função, porém suas provas eram incompletas. Seu trabalho foi completado por Hadamard, em 1893, e por Mangoldt, em 1894.[3]

Os zeros s = σ + i t desta função são de dois (ou três) tipos:

  • os zeros triviais, que são os valores de s que correspondem aos números pares negativos
  • os zeros localizados na linha crítica em que σ = 1/2
  • possíveis outros zeros, localizados na faixa crítica 0 < σ < 1

A hipótese de Riemann é a de que todos os zeros da faixa crítica são aqueles em que σ = 1/2.[4]

Os três primeiros zeros na linha crítica da função correspondem a t1 = 14,1347, t2 = 21,0220 e t3 = 25,0109.[4]

Ver também

editar
Notas e referências
Notas
  1. Em análise complexa, a continuação analítica de uma função pode retornar uma função multivariada, por exemplo,   é uma função que pode ser definida para valores complexos cuja parte real é maior que zero, mas sua continuação analítica para valores cuja parte real é negativa não é única, ou seja, dependendo do caminho que se tome, pode ser que   seja i ou -i.
Referências
  1. a b Albert Edward Ingham, The Distribution of Prime Numbers (1932), Introduction, p.2 [google books]
  2. Albert Edward Ingham, The Distribution of Prime Numbers (1932), Introduction, p.4
  3. Albert Edward Ingham, The Distribution of Prime Numbers (1932), Introduction, p.5
  4. a b Richard P. Brent, Computation of the zeros of the Riemann zeta function in the critical strip (1978). Computer Science Department. Paper 2376. [em linha]
Ícone de esboço  Este artigo sobre matemática é um esboço. Você pode ajudar a Wikipédia expandindo-o.