[go: up one dir, main page]

Saltar para o conteúdo

Vector nulo

Origem: Wikipédia, a enciclopédia livre.

Em álgebra linear, vetor nulo é o vetor representado por um segmento orientado nulo (de comprimento zero). É representado por e possui propriedades únicas entre todos os vetores assim como o zero, entre os números reais.

Propriedades do vetor nulo

[editar | editar código-fonte]
  • É o elemento neutro da adição de vetores.
  • Sua soma com um ponto dá o próprio ponto.
  • Seu produto com um escalar é o próprio vetor nulo.
  • É o único vetor com a propriedade de ser igual a seu oposto.
  • O conjunto unitário é linearmente dependente. Logo, qualquer n-upla que contenha o vetor nulo também é linearmente dependente e nenhuma base do espaço vetorial pode contê-lo.
  • Por ter comprimento zero, não faz sentido atribuir sentido ou direção a este, portanto, pode-se considerá-lo o único vetor paralelo e, ao mesmo tempo, perpendicular a todos os outros vetores.
  • Todo sub-espaço vetorial deve conter pelo menos o vetor nulo.