A constructive Coq library for the mechanisation of undecidability Yannick Forster and Dominique Larchey-Wendling MLA 2019 March 13 #### Decidability A problem $P: X \to \mathbb{P}$ is decidable if . . . Classically Fix a model of computation *M*: there is a decider in *M* For the cbv λ -calculus $$\exists u: \mathbf{T}. \forall x: X. \ (u\overline{x} \rhd T \land Px) \lor (u\overline{x} \rhd F \land \neg Px)$$ Type Theory $$\exists f: X \to \mathbb{B}. \ \forall x: X. \ Px \leftrightarrow fx = \text{true}$$ dependent version $$(\mathsf{Coq},\,\mathsf{Agda},\,\mathsf{Lean},\,\dots)$$ $$\operatorname{dec} P := \forall x : X. \{Px\} + \{\neg Px\}$$ #### Undecidability A problem $P: X \to \mathbb{P}$ is undecidable if . . . Classically If there is no decider *u* in *M* For the cbv $$\lambda$$ -calculus $\neg \exists u : \mathbf{T} . \forall x : X. \ (u\overline{x} \triangleright T \land Px) \lor (u\overline{x} \triangleright F \land \neg Px)$ Type Theory $$\neg(\forall x: X. \{Px\} + \{\neg Px\}) \ \neg(\forall x: X. \{Px\} + \{\neg Px\})$$ In reality: most proofs are by reduction #### Definition (Synthetic undecidability) P undecidable := Halting problem reduces to P #### The library https://github.com/uds-psl/coq-library-undecidability - Halting problems - Turing machines - Minsky machines - μ-recursive functions - call-by-value lambda-calculus - Post correspondence problem - Provability in linear logic and first-order logic - Solvability of Diophantine equations, including a formalisation of the DPRM theorem #### Today - 1 Overview over PCP and H10 as entry points - 2 Exemplary undecidability proof for intuitionistic linear logic - 3 Overview over the library and future work #### Post correspondence problem From Wikipedia, the free encyclopedia The **Post correspondence problem** is an undecidable decision problem that was introduced by Emil Post in 1946.^[1] Because it is simpler than the halting problem and the *Entscheidungsproblem* it is often used in proofs of undecidability. # PCP_X MLA19inNancy MLA19inNancy 19*in* Nan - Symbols *a*, *b*, *c*: symbols of type *X* - Strings x, y, z: lists of symbols - \blacksquare Card x/y: pairs of strings - Card set R: finite set of cards - Stacks A: lists of cards $$\begin{bmatrix} 1 := \varepsilon & & \end{bmatrix}^2 := \varepsilon (x/y :: A)^1 := x(A^1) (x/y :: A)^2 := y(A^2)$$ $$PCP(R) := \exists A \subseteq R. \ A \neq [] \land A^1 = A^2$$ $PCP \leq BPCP$ #### $PCP \prec BPCP$ PCP is $PCP_{\mathbb{N}}$ BPCP is $PCP_{\mathbb{B}}$ $$f:\mathbb{N}^* o\mathbb{B}^*$$ $$f(a_1 \ldots a_n : \mathbb{N}^*) := 1^{a_1} 0 \ldots 1^{a_n} 0$$ Lift f to cards, card sets and stack by pointwise application To prove: $PCP R \leftrightarrow BPCP(f R)$ Define inverse function g, easy # Hilbert's tenth problem, constraints version $$c$$: constr ::= $x \dotplus y \doteq z \mid x \stackrel{.}{\times} y \stackrel{.}{=} z \mid x \stackrel{.}{=} 1$ $$[x + y = z]_{\rho} := \rho x + \rho y = \rho z$$ $$[x \times y = z]_{\rho} := \rho x \cdot \rho y = \rho z$$ $$[x = 1]_{\rho} := \rho x = 1$$ $$\mathsf{H}10\mathsf{c}(L:\mathbb{L}\,\mathsf{constr}) := \exists \rho, \forall c \in L, \ \llbracket c \rrbracket_{\rho}$$ # Undecidability of Intuitionistic Linear Logic (CPP '19) #### The Undecidability of Boolean BI through Phase Semantics (full version) Dominique Larchey-Wendling[†] and Didier Galmiche[†] LORIA - CNRS[†] - UHP Nancy[†] UMR 7503 BP 239, 54506 Vandœuvre-lès-Nancy, France {larchey, galmiche|@loria.fr #### Abstract We solve the open problem of the decidability of Boolean BI logic (BBI), which can be considered as the core of separation and spatial logics. For this, we define a complete Kripke semantics (corresponding to the labelled tableaux system) define the same notion of validity. This situation evolved recently with two main families of results. On the one hand, in the spirit of his work with Calcagno on Classical Bl [2], Brotherston provided a Dis- #### Verification of PCP-Related Computational Reductions in Coq Yannick Forster (68), Edith Heiter, and Gert Smolka Saarland University, Saarbrücken, Germany {forster,heiter,smolka}@ps.uni-saarland.de Abstract. We formally verify several computational reductions concerning the Post correspondence problem (PCP) using the proof assistant Coq. Our verification includes a reduction of the halting problem for Turing machines to string rewriting to a reduction of string rewriting to Purp. and reductions of PCP to the intersection problem and the palindrome problem for context-free grammaction. $$TM \xrightarrow{ITP18} PCP \xrightarrow{1} BPCP \xrightarrow{2} BSM \xrightarrow{3} MM \xrightarrow{4} LICS10 EILL \xrightarrow{5} ILL$$ # Low-level Code #### Code and subcode - lacksquare Given a type $\mathbb I$ of instructions - Codes are \mathbb{N} -indexed programs: $(i, P = [\rho_0; \dots; \rho_{n-1}])$ of type $\mathbb{N} \times \mathbb{L} \mathbb{I}$ $$i : \rho_0;$$ $i + 1 : \rho_1;$... $i + n - 1 : \rho_{n-1};$ - labels i, ..., i + n 1 identify PC values inside the program - Subcode relation $(i, P) <_{sc} (j, Q)$ $$(i, P) <_{sc} (j, Q) := \exists L R, \land \begin{cases} Q = L + P + R \\ i = j + |L| \end{cases}$$ - instruction ρ occurs at pos. i in (j, Q): $(i, [\rho]) <_{sc} (j, Q)$ - "Sub-programs" are contiguous segments #### Small Step Semantics for Code - Instructions as state transformers - states (i, v): i is PC value and v: \mathbb{C} a configuration - a step relation $\rho / (i_1, v_1) \succ (i_2, v_2)$ - ▶ instruction ρ at position i_1 transforms state (i_1, v_1) into (i_2, v_2) - extends to codes: $(i, P) // (i_1, v_1) \succ^n (i_2, v_2)$ means - ▶ Code (i, P) transforms state (i_1, v_1) into (i_2, v_2) Þ $$\frac{(i_1, [\rho]) <_{sc} (i, P) \quad \rho /\!\!/ (i_1, v_1) \succ (i_2, v_2)}{(i, P) /\!\!/ (i_1, v_1) \succ (i_2, v_2)}$$ ▶ Reflexive transitive closure: $\mathcal{P} // s \succ^* s'$ #### Terminating computations and Big Step Semantics - denote \mathcal{P} for codes like (i, P) and s for states like (j, v) - - ▶ no instruction at j in \mathcal{P} , computation is blocked (sufficient) - $P // (j, v) >^n s \land \text{out } j P \text{ implies } n = 0 \land s = (j, v)$ - Terminating computations $$\mathcal{P} /\!\!/ s \leadsto (j, w) := \mathcal{P} /\!\!/ s \succ^* (j, w) \land \text{out } j \mathcal{P}$$ ■ Termination $$\mathcal{P} /\!\!/ s \downarrow := \exists s', \mathcal{P} /\!\!/ s \leadsto s'$$ #### Contribution $$PCP \longrightarrow BPCP \xrightarrow{2} BSM \longrightarrow MM \longrightarrow eILL \longrightarrow ILL$$ # $\mathsf{BPCP} \preceq \mathsf{BSM}$ # Binary stack machines (BSM) - n stacks of 0s and 1s (LB) for a fixed n - lacksquare state of type (PC, $ec{v}$) $\in \mathbb{N} imes (\mathbb{L}\,\mathbb{B})^n$ - instructions (with $\alpha \in [0, n-1]$ and $b \in \mathbb{B}$ and $p, q \in \mathbb{N}$) $$\texttt{bsm_instr} \ ::= \ \texttt{POP} \ \alpha \ p \ q \ | \ \texttt{PUSH} \ \alpha \ b$$ ■ Step semantics for POP and PUSH (pseudo code) POP $$\alpha$$ p q : if $\alpha = []$ then PC \leftarrow q if $\alpha = 0$:: β then $\alpha \leftarrow \beta$; PC \leftarrow p if $\alpha = 1$:: β then $\alpha \leftarrow \beta$; PC \leftarrow PC $+ 1$ ■ BSM termination problem: $BSM(n, i, \mathcal{B}, \vec{v}) := (i, \mathcal{B}) \ /\!\!/ \ (i, \vec{v}) \downarrow$ #### Example (emptying stack α in 3 instructions) $$i: \mathtt{POP} \ \alpha \ i \ (i+3)$$ $i+1: \mathtt{PUSH} \ \alpha \ 0$ $i+2: \mathtt{POP} \ \alpha \ i \ i$ #### BPCP ≺ BSM - Iterate all possible lists of card (indices) - Hard code every card as PUSH instructions - Given a list of cards, compute top and bottom words in two stacks - Check for those two stacks equality ``` Definition compare_stacks x y i p q := (* i *) [POP x (4+i) (7+i) ; (* 1+i *) POP y q q; (* 2+i *) PUSH x Zero ; POP x i i ; (* JMP i *) (* 4+i *) POP y i q; (* 5+i *) PUSH y Zero ; POP y q i ; (* JMP q *) (* 7+i *) POP y q p; (* 8+i *) PUSH x Zero ; POP x q q]. (* JMP q *) ``` #### Lemma (Comparing two distinct stacks for identical content) When $x \neq y$, for any stack configuration \vec{v} , there exists j and \vec{w} s.t. ``` (i, compare_stacks \ x \ y \ p \ q \ i) \ /\!/ \ (i, \vec{v}) \succ^* (j, \vec{w}) ``` where j=p if $\vec{v}[x]=\vec{v}[y]$ and j=q otherwise. For any $\alpha \notin \{x,y\}$ we have $\vec{w}[\alpha]=\vec{v}[\alpha]$. # Certified Low-Level Compiler # Certified compilation (assumptions) - \blacksquare model X (resp. Y): language + step semantics - lacksquare a simulation: $oxtimes : \mathbb{C}_X o \mathbb{C}_Y o \mathbb{P}$ - a certified compiler from model X to model Y - given a Single Instruction Compiler (SIC): - transforms a single X instructions - ▶ into a list of *Y* instructions - ▶ needs a *linker* remapping PC values - with the following assumptions: - ▶ *X* has total step sem.; *Y* has deterministic step sem. - ▶ length of SIC compiled instruction does not depend on linker - ► SIC is sound with respect to ⋈ # Certified compilation (results) - INPUT: X program \mathcal{P} and start target PC value $j: \mathbb{N}$ - lacktriangle OUTPUT: a linker *lnk* and *Y* program $\mathfrak Q$ - such that $j = \text{start } \Omega = Ink(\text{start } P)$; $\forall i$, out $i P \rightarrow Ink i = \text{end } \Omega$; #### Lemma (Soundness) $$v_{1} \bowtie w_{1} \land \mathcal{P} /\!\!/_{X} (i_{1}, v_{1}) \rightsquigarrow (i_{2}, v_{2})$$ $$\rightarrow \exists w_{2}, \ v_{2} \bowtie w_{2} \land \mathcal{Q} /\!\!/_{Y} (Ink i_{1}, w_{1}) \rightsquigarrow (Ink i_{2}, w_{2})$$ #### Lemma (Completeness) $$\begin{aligned} &v_1\bowtie w_1 \land \mathbb{Q} \ /\!\!/_Y \ (\mathit{Ink}\ i_1, w_1) \leadsto (j_2, w_2) \\ \rightarrow &\ \exists \ i_2\ v_2, \ \ v_2\bowtie w_2 \land \mathcal{P} \ /\!\!/_X \ (i_1, v_1) \leadsto (i_2, v_2) \land j_2 = \mathit{Ink}\ i_2. \end{aligned}$$ ■ Completeness essential for non-termination #### Contribution $$PCP \longrightarrow BPCP \longrightarrow BSM \stackrel{3}{\longrightarrow} MM \longrightarrow eILL \longrightarrow ILL$$ # $\mathsf{BSM} \preceq \mathsf{MM}$ # Minsky Machines (N valued register machines) - n registers of value in \mathbb{N} for a fixed n - state: $(PC, \vec{v}) \in \mathbb{N} \times \mathbb{N}^n$ - instructions (with $\alpha \in [0, n-1]$ and $p \in \mathbb{N}$) $$mm_instr ::= INC \alpha \mid DEC \alpha p$$ ■ Step semantics for INC and DEC (pseudo code) INC $$\alpha$$: $\alpha \leftarrow \alpha + 1$; PC \leftarrow PC $+ 1$ DEC α p : if $\alpha = 0$ then PC \leftarrow p if $\alpha > 0$ then $\alpha \leftarrow \alpha - 1$; PC \leftarrow PC $+ 1$ $\blacksquare \hspace{0.5cm} \boxed{\hspace{0.5cm} \textit{MM}(\textit{n}, \mathfrak{N}, \vec{\textit{v}}) := (1, \mathfrak{N}) \hspace{0.1cm} / \hspace{-0.1cm} / \hspace{0.1cm} (1, \vec{\textit{v}}) \leadsto (0, \vec{0}) \hspace{0.5cm} \big| \hspace{0.5cm} \big(\text{termination at zero} \big)}$ Example (transfers α to β in 3 instructions, γ_0 spare register) $$i: DEC \ \alpha \ (3+i)$$ $i+1: INC \ \beta$ $i+2: DEC \ \gamma_0 \ i$ # $BSM \leq MM$ (simulating stacks) - lacksquare Simulation oxtimes between stacks $(\mathbb{L}\,\mathbb{B})$ and \mathbb{N} - ► stack 100010 simulated by 1 · 010001 - ▶ $s2n \ l : \mathbb{N}$ using: $s2n \ [] := 1$ $s2n \ (b :: l) := b + 2 \cdot s2n \ l$ - $\vec{v} \bowtie \vec{w}$ iff for any α , $s2n(\vec{v}[\alpha]) = \vec{w}[\alpha]$ ``` Definition mm_div2 := (* i *) [DEC src (6+i) ; (* i+i *) INC rem ; (* 2+i *) DEC src (i+6) ; (* 3+i *) DEC rem (4+i) ; (* 4+i *) INC quo ; (* 5+i *) DEC rem i]. ``` #### Lemma (Euclidian division by 2 of register src) When quo \neq rem \neq src, $b \in \{0,1\}$ and $k \in \mathbb{N}$ $$\vec{v}[\text{quo}] = 0 \land \vec{v}[\text{rem}] = 0 \land \vec{v}[\text{src}] = b + 2.k$$ $$\rightarrow (\textit{i}, \text{mm_div2}) \ /\!\!/ \ (\textit{i}, \vec{v}) \succ^* (6 + \textit{i}, \vec{v}[\text{src} := 0, \text{quo} := k, \text{rem} := b])$$ # $BSM \leq MM$ (simulating instructions) - We implement an instruction compiler (BSM SIC) - simulating PUSH and POP operations - ▶ using mm_div2, mm_mul2, ... - we need two spare MM registers - \triangleright *n* stacks, 2 + n registers - As input for our certified low-level compiler - from (i, P), a n stacks BSM-program - we compute a 2 + n registers MM-program bsm_mm - which simulates termination #### Lemma (BSM termination simulated by MM termination) for any $\vec{v} \in \mathbb{N}^n$, $$(i, P) \ /\!/ \ (i, \vec{v}) \downarrow \qquad \leftrightarrow \qquad (1, bsm_mm) \ /\!/ \ (1, 0 :: 0 :: \vec{w}) \rightsquigarrow (0, \vec{0})$$ where $\vec{w} = \text{vec_map s2n } \vec{v}$ #### Contribution $$PCP \longrightarrow BPCP \longrightarrow BSM \longrightarrow MM \stackrel{4}{\longrightarrow} eILL \stackrel{5}{\longrightarrow} ILL$$ # $\mathsf{MM} \preceq \mathsf{eILL} \preceq \mathsf{ILL}$ #### Intuitionistic Linear Logic #### Definition (S_{ILL} sequent calculus for the $(!, \multimap, \&)$ fragment) $$\frac{}{A \vdash A} \quad [id] \quad \frac{\Gamma \vdash A \quad A, \Delta \vdash B}{\Gamma, \Delta \vdash B} \quad [cut]$$ $$\frac{\Gamma, A \vdash B}{\Gamma, !A \vdash B} \quad [!_L] \quad \frac{!\Gamma \vdash B}{!\Gamma \vdash !B} \quad [!_R] \quad \frac{\Gamma \vdash B}{\Gamma, !A \vdash B} \quad [w] \quad \frac{\Gamma, !A, !A \vdash B}{\Gamma, !A \vdash B} \quad [c]$$ $$\frac{\Gamma, A \vdash C}{\Gamma, A \& B \vdash C} \quad [\&_L^1] \quad \frac{\Gamma, B \vdash C}{\Gamma, A \& B \vdash C} \quad [\&_L^2] \quad \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \& B} \quad [\&_R]$$ $$\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \multimap B \vdash C} \quad [\multimap_L] \quad \frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B} \quad [\multimap_R]$$ - $ILL(\Gamma, A) := provable(\Gamma \vdash A)$ - the reduction for MM occurs in the eILL sub-fragment # Elementary ILL (eILL) - Elementary sequents: $\{\Sigma, g_1, \ldots, g_k \vdash d \mid (g_i, a, b, c, d \text{ variables})\}$ - Σ contains commands: - ▶ $(a \multimap b) \multimap c$, correponding to INC - ▶ $a \multimap (b \multimap c)$, correponding to DEC - ▶ $(a \& b) \multimap c$, correponding to FORK #### Definition (GeILL goal directed rules for eILL) $$\frac{1}{|\Sigma,a\vdash a|} \langle \mathsf{Ax} \rangle \qquad \frac{|\Sigma,\Gamma\vdash a| |\Sigma,\Delta\vdash b|}{|\Sigma,\Gamma,\Delta\vdash c|} \quad a\multimap(b\multimap c) \in \Sigma$$ $$\frac{|\Sigma,a,\Gamma\vdash b|}{|\Sigma,\Gamma\vdash c|} \quad (a\multimap b)\multimap c \in \Sigma \qquad \frac{|\Sigma,\Gamma\vdash a| |\Sigma,\Gamma\vdash b|}{|\Sigma,\Gamma\vdash c|} \quad (a\&b)\multimap c \in \Sigma$$ - Sound and complete w.r.t. S_{ILL} for elLL sequents - Trivial Phase Semantics (commutative monoid, closure is identity) - ightharpoonup S_{ILL} and G_{ellL} sound for TPS - The reduction eILL \leq ILL is the identity map # Encoding Minsky machines in eILL - lacksquare Given ${\mathfrak M}$ as a list of MM instructions - ▶ for every register $i \in [0, n-1]$ in M, two logical variables x_i and \overline{x}_i - for every position/state (PC = i) in \mathcal{M} , a variable q_i $$\{x_0,\ldots,x_{n-1}\} \uplus \{\overline{x}_0,\ldots,\overline{x}_{n-1}\} \uplus \{q_0,q_1,\ldots\}$$ - a computation $\mathcal{M} /\!\!/ (i, \vec{v}) \leadsto (0, \vec{0})$ is represented by $! \Sigma_{\mathcal{M}}; \Delta_{\vec{v}} \vdash q_i$ - where if $\vec{v} = (p_0, ..., p_{n-1})$ then $\Delta_{\vec{v}} = p_0.x_0, ..., p_{n-1}.x_{n-1}$ - the commands in $\Sigma_{\mathfrak{M}}$ are determined by instructions in \mathfrak{M} $$\begin{array}{lll} \Sigma_{\mathcal{M}} & = & \{(q_0 \multimap q_0) \multimap q_0\} \\ & \cup & \{x_\beta \multimap (\overline{x}_\alpha \multimap \overline{x}_\alpha), (\overline{x}_\alpha \multimap \overline{x}_\alpha) \multimap \overline{x}_\alpha \mid \alpha \neq \beta \in [0, n-1]\} \\ & \cup & \{(x_\alpha \multimap q_{i+1}) \multimap q_i \mid i : \mathtt{INC} \ \alpha \in \mathcal{M}\} \\ & \cup & \{(\overline{x}_\alpha \And q_i) \multimap q_i, x_\alpha \multimap (q_{i+1} \multimap q_i) \mid i : \mathtt{DEC} \ \alpha \ j \in \mathcal{M}\} \end{array}$$ # Theorem (Simulating MM termination at zero with G_{elLL} entailment) $$\mathcal{M} /\!\!/ (i, \vec{v}) \rightsquigarrow (0, \vec{0}) \quad \leftrightarrow \quad ! \Sigma_{\mathcal{M}}, \Delta_{\vec{v}} \vdash q_i$$ ■ Hence the reduction MM ≺ eILL # MM to eILL, (continued) Increment: $$i: \ \mathtt{INC} \ x \in \mathfrak{M} \ \left| \begin{array}{c} x \leftarrow x+1 \\ \mathtt{PC} \leftarrow i+1 \end{array} \right| \frac{\ldots}{ ! \ \Sigma, x, \Delta \vdash q_{i+1} } \left((x \multimap q_{i+1}) \multimap q_i \in \Sigma \right)$$ # MM to eILL, (continued) Decrement $$i: \ \mathtt{DEC} \ x \ j \in \mathfrak{M} \qquad \qquad \mathsf{if} \ x = 0 \ \mathsf{then} \ \mathtt{PC} \leftarrow j \\ \mathsf{else} \ x \leftarrow x - 1; \mathtt{PC} \leftarrow i + 1$$ lacksquare corresponds to two proofs x > 0 and x = 0: $$\frac{\frac{\cdots}{!\,\Sigma,x\vdash x}\,(\mathsf{Ax})\quad\frac{\cdots}{!\,\Sigma,\Delta\vdash q_{i+1}}}{!\,\Sigma,x,\Delta\vdash q_{i}}\,(x\multimap(q_{i+1}\multimap q_{i})\in\Sigma)}$$ $$\frac{\cdots}{!\,\Sigma,\Delta\vdash\overline{x}}\,(x\not\in\Delta)\quad\frac{\cdots}{!\,\Sigma,\Delta\vdash q_{j}}}{(\overline{x}\&q_{j})\multimap q_{i}\in\Sigma)}$$ #### Zero test $x \notin \Delta$ in elLL - $!\Sigma; \Delta \vdash \overline{x}$ provable iff $x \notin \Delta$ - Proof for y, Δ with $y \neq x$: $$\frac{1}{|\Sigma, y \vdash y|} (Ax) \frac{\cdots}{|\Sigma, \Delta \vdash \overline{x}|} (y \multimap (\overline{x} \multimap \overline{x}) \in \Sigma)$$ ■ Proof for empty context $\Delta = \emptyset$: $$\frac{1}{|\Sigma, \overline{x} \vdash \overline{x}|} (Ax) \\ \frac{|\Sigma, \overline{x} \vdash \overline{x}|}{|\Sigma, \emptyset \vdash \overline{x}|} ((\overline{x} \multimap \overline{x}) \multimap \overline{x} \in \Sigma)$$ #### Full reduction #### Theorem $$\mathcal{M}: (i, \vec{v}) \longrightarrow^* (0, \vec{0}) \Rightarrow ! \Sigma_{\mathcal{M}}, \Delta_{\vec{v}} \vdash q_i$$ other direction by soundness of TPS ($[A]: \mathbb{N}^n \to \mathbb{P}$): #### Wrap-up of this chain of reduction #### Reductions: - PCP to BPCP: trivial binary encoding - BPCP to BSM: verified exhaustive search - BSM to MM: certified compiler between low-level languages - MM to eILL: elegant encoding of computational model in logics - eILL to ILL: faithfull embedding Low verification overhead (compared to detailed paper proofs) # A library of undecidable problems in Coq #### **Papers** - Hilbert's Tenth Problem in Coq. Dominique Larchey-Wendling and Yannick Forster. Technical report (2019). - Certified Undecidability of Intuitionistic Linear Logic via Binary Stack Machines and Minsky Machines. Yannick Forster and Dominique Larchey-Wendling. CPP '19. - On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem. Yannick Forster, Dominik Kirst, and Gert Smolka. CPP '19. - Verification of PCP-Related Computational Reductions in Coq. Yannick Forster, Edith Heiter, and Gert Smolka. ITP 2018. - Call-by-Value Lambda Calculus as a Model of Computation in Coq. Yannick Forster and Gert Smolka. Journal of Automated Reasoning (2018) #### Conclusion #### More future work: - Realisability model of the calculus of inductive constructions witnessing (the propositional version) of excluded middle - Automated translation of Coq function definitions into a concrete model of computation (e.g. call-by-value lambda calculus) #### What we have: - A constructive library of undecidable problems - Exemplary undecidability proof for provability in linear logic - Enabling loads of future work. Attach your own undecidable problems! https://github.com/uds-psl/coq-library-undecidability #### Questions?