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ABSTRACT

With the growing awareness to fairness issues in machine learning and the realization of the central
role that data representation has in data processing tasks, there is an obvious interest in notions of
fair data representations. The goal of such representations is that a model trained on data under the
representation (e.g., a classifier) will be guaranteed to respect some fairness constraints, while still
being expressive enough to model the task well. Such representations are useful when they can be
fixed for training models on various different tasks and also when they serve as data filtering between
the raw data (available to the representation designer) and potentially malicious agents that use the
data under the representation to learn predictive models and make decisions. A long list of recent
research papers strive to provide tools for achieving these goals.
However, we prove that in most cases, such goals are inaccessible! Roughly stated, we prove that
no representation can guarantee the fairness of classifiers for different tasks trained using it (while
retaining the needed expressive powers). The reasons for this impossibility depend on the notion
of fairness one aims to achieve. For the basic ground-truth-independent notion of Demographic (or
Statistical) Parity, the obstacle is conceptual; a representation that guarantees such fairness inevitably
depends on the marginal (unlabeled) distribution of the relevant instances, and in most cases that
distribution changes from one task to another. For more refined notions of fairness, that depend
on some ground truth classification, like Equalized Odds (requiring equality of error rates between
groups), fairness cannot be guaranteed by a representation that does not take into account the task
specific labeling rule with respect to which such fairness will be evaluated (even if the marginal data
distribution is known a priori). Furthermore, for tasks sharing the same marginal distribution, we
prove that except for trivial cases, no representation can guarantee Equalized Odds fairness for any
two different tasks while enabling accurate label predictions for both.

Fair classification, group fairness, data representation, fair data representation, Demographic Parity, Equalized Odds.

1 INTRODUCTION

Automated decision making has become more and more successful over the last few decades and has therefore been
used in an increasing number of domains, either as stand alone, or to support human decision makers. This includes
many sensitive domains which significantly impact people’s livelihoods, such as granting loans, university admissions,
recidivism predictions, or setting insurance rates. It was found that many such decision tools, often unintentionally,
have biases against minority groups, and therefore lead to discrimination. In response to these concerns, the machine
learning research community has been devoting effort to developing clear notions of fair decision making, and coming
up with algorithms for implementing fair machine learning.

A common approach to address the important issue of fair algorithmic decision making is through fair data repre-
sentation. The idea is that some regulator, or a responsible data curator, transforms collected data to a format (–
representation), that can then be used for solving downstream classification tasks, while providing guarantees of
fairness. This approach was put forward by the seminal paper of Zemel et al. Zemel et al. (2013). In their words:
"our intermediate representation can be used for other classification tasks (i.e., transfer learning is possible)... We
further posit that such an intermediate representation is fundamental to progress in fairness in classification, since it is
composable and not ad hoc; once such a representation is established, it can be used in a blackbox fashion to turn
any classification algorithm into a fair classifier, by simply applying the classifier to the sanitized representation of
the data". Many followup papers aim to realize this paradigm, solving technical and algorithmic issues Madras et al.
(2018); Edwards & Storkey (2016); McNamara et al. (2019); Song et al. (2019); Creager et al. (2019) (to mention just a
few). The main contribution of this paper is showing that, basically, it is impossible to achieve that goal!

‡ Also Canada AI CIFAR chair and faculty at the Vector Institute, Toronto.

1



Published at 1st Conference on Lifelong Learning Agents, 2022

1.1 OUR IMPOSSIBILITY RESULTS

We prove the following impossibility results:

Demographic Parity (DP) fairness: Given any domain partitioned into two non-empty groups (say,‘privileged’ and
‘disadvantaged’), no non-trivial data representation can guarantee that every classifier expressible under that
representation is DP fair for all possible probability distributions over that domain.

Equalized Odds and Predictive Rate Parity (Namely, fairness notions that take ground truth classification into
account): Given any two different classification tasks over the same unlabeled data distribution (a.k.a. marginal)
in which the ground truth classification has some correlation with the group membership, no data representation
can simultaneously enable accurate label classifiers for both while guaranteeing that any classifier expressible
over that representation is fair for both these tasks.

The “fairness of a feature" cannot be determined in isolation Several papers on fairness of representations discuss
fairness as a property of each feature (e.g., Zemel et al. (2013); Creager et al. (2019); Grgic-Hlaca et al. (2018)).
We show that when focussing on the outcome of a classification rule that uses a given feature, the fairness of
the feature cannot be decided without considering the context of the other features used for that classification
task. In particular, we show that if we consider accuracy maximizing classifiers and Equalized Odds fairness,
the same feature can either increase or decrease the fairness of a representation on a fixed task, depending on
the other features used in the representation.

Creager et al. Creager et al. (2019) state (in the Discussion section): “There are two main directions of interest for
future work. First is the question of fairness metrics: a wide range of fairness metrics beyond demographic parity have
been proposed (Hardt et al. (2016); Pleiss et al. (2017)). Understanding how to learn flexibly fair representations with
respect to other metrics is an important step in extending our approach. Secondly, robustness to distributional shift
presents an important challenge in the context of both disentanglement and fairness". Our results can be viewed as
answering both questions negatively.

1.2 THE SOURCE OF DISCREPANCY WITH PREVIOUS PUBLICATION

There is an apparent discrepancy between our impossibility results and the long list of papers claiming to achieve fair
representations. What is the source of that discrepancy?

1. Demographic Parity:
The key distinguishing component is that in most (if not all) of the papers that claim positive results about
fair representations, the design of the fair representation relies (often implicitly) on having access to the
data distribution with respect to which the fairness is defined.When the notion of fairness is independent of
the ground truth classification (the case of Demographic Parity), the distribution in question is the marginal
(unlabeled) one. Let us examine how Demographic Parity defined in the fairness literature.

Zemel et al, Zemel et al. (2013) define in in equation (1) there as P (Z = k|x+ ∈ X+) = P (Z = k|x− ∈
X−),∀k. However, they do not specify what that probability P is. Often when a probability over a finite
set is not being defined, the implicit semantics is that it is the uniform distribution over that set. Here,
the sets X+ and X− are a partition of some domain set X . The domain set is defined rather vaguely
"X denotes the entire data set of individuals." Should we consider the set of all applicants for a given
position, or the entire population of the city that position is in? Should we consider the local population
or rather the population of the state or the world?

Barocas et al, Barocas et al. (2019) (the “Fairness in Machine Learning” book) Definition 1 in the “For-
mal non-discrimination criteria" subsection of Chapter 2 reads P [R = 1|A = a] = P [R = 1|A = b]
without specifying what that probability distribution P is.

Creager et al. Creager et al. (2019) express the probability their notion of fairness refers to by "x, y, a,∼
pdata" (the beginning of the Background section there) without any further elaboration of what that pdata
may be.

These ambiguities are in the heart of the discrepancies between the claims in those papers and the formal
impossibility results we prove here.
In situations in which the desired notion of fairness is determined with respect to the specific action or decision
that the agent needs to make, the assumption that a designer of a multi-task (or "flexible") data representation
has access to the relevant data distribution can be justified only in rather limited situations. For example,
it is conceivable that the sought after Demographic Parity for acceptance of students to a given university
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program depends on the distribution of applicants to that program,in that university (rather than, say, the
percentage of members of each group in the world). That distribution is likely to change between universities,
between programs and between academic years. Therefore, based on our results, no a priory- designed data
representation for accepting students to programs can be guaranteed to provide the Demographic Parity fairness
it aims to establish. The situation is similar when it comes to granting loans - the distribution of applicants
changes between loan granting institutions, branch locations, requested sums, dates, etc. In fact, it is hard to
come up with any realistic scenarios in which a fixed data distribution remains unchanged throughout various
classification tasks that may use the data representation down the road.

2. Equalized Odds and Predictive Rate Parity:
When the notion of fairness of concern does involve ground truth labels (such as Equalised Odds or Predictive
Rate Parity), fairness becomes harder to achieve. For a fair representation to be useful for some task (say, for
concreteness, a classification task), it has to balance two opposing requirements; on one hand, the fairness
requirement (in the sense of making sure that any classifier built on the representation is bound to be fair),
that constrains the expressive power of the representation. On the other hand, to be useful for modeling the
task at hand, the representation needs to be rather expressive - sufficiently so to allow expressing task accurate
models (classifiers). In turns out that no representation can fulfil such requirements simultaneously for any two
sufficiently different tasks (in a sense that we make precise in Section 4). We therefore conclude that there can
be no representation that meets the desiderata stated in many of the papers aiming for “fair representations"
(e.g., Zemel et al. (2013), Creager et al. (2019) and many more). In particular, for those task-dependent notions
of group fairness, no data representation can meet the goal stated in those papers (namely, can "be used in a
blackbox fashion to turn any classification algorithm into a fair classifier, by simply applying the classifier to
the sanitized representation of the data"). Regardless of the data available to the representation designer, any
representation that meets that fairness goal is bound to defeat the quest for allowing accuracy on more than a
single task!

Paper road map: We begin our discussion with a concise taxonomy of the notions of fair representation that our work
relates to (Subsection 1.3). Section 2 gives an overview of the related work. Section 3 introduces our basic notation and
Section 4 contains our main results on the impossibility of generic fairness of a representation. In Section 5 we show
similar impossibility results for Predictive Rate Equality fairness, and in Section 6 we show that the effect of a single
feature on the fairness of a representation cannot be determined by looking at that feature in isolation.

1.3 WHAT IS fair representation?

The term ‘fair data representation’ encompasses a range of different meanings. When word embedding results in smaller
distance between the vectors representing ‘woman’ and ‘nurse’ relative to the distance between the representations of
‘woman’ and ‘doctor’ and the other way around for ‘man’, is it an indication of bias in the representation or is it just
a faithful reflection of a bias in society? Rather than delving into such issues, we discuss an arguably more concrete
facet of data representation; We examine representation fairness from the perspective of its effect on the fairness of
classification rules that agents using data represented that way may come up with. Such a view takes into consideration
two setup characteristics:

The objective of the agent using the data We distinguish two types of classification prediction agents (formal defini-
tions of these aspects of fairness are provided in section 3.2):

Malicious - driven by a bias against a group of subjects. To protect against such an agent, a fair representation
(or feature set) should be such that every classifier based on data represented that way is fair. This is
arguably the most common approach to fair representations in the literature e.g., Zemel et al. (2013);
Madras et al. (2018).

Accuracy Driven - focusing on traditional measures of learning efficiency, ignoring fairness considerations.
A representation is accuracy-driven fair if every loss minimizing classifier based on that representation is
fair.

In this work we focus on representations aimed to guarantee fairness of malicious agents.

The notion of group fairness applied to the classification decisions The wide range of group fairness notions (for
classification) can be taxonomized along several dimensions: Does the notion depend on the ground truth
classification or only on the agent’s decision (like demographic parity)? Is a perfectly accurate decision
(matching the ground truth classification) always considered fair (like in odds equality)? Does the fairness
notion depend on unobservable features (like intention or causality)? In this work we focus on fairness notions
that are ground-truth-dependent, view the ground truth classification as fair and depend only on observable
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features. Picking which notion of fairness one wishes to abide by depends on societal goals and may vary
from one task to another. This is outside the scope of this paper. We refer the reader to Barocas et al. (2019)
for further discussions of these issues.

Our running example of such a notion is Equalized Odds (EO) Hardt et al. (2016), however our results
hold as well for other common notions of fairness that meet the above conditions (like Predictive Rate
Parity/Calibration within groups Kleinberg et al. (2016)) We provide formal definitions of these notions in
Section 3.1.

2 RELATED WORK

Most, if not all, of the literature concerning the creation of fair data representations addresses this task in a setup
where some input data (or a probability distribution over some domain of individuals) is given to the agent building the
representation (e.g., Edwards & Storkey (2016); Madras et al. (2018); Zemel et al. (2013); Song et al. (2019)). Such
a probability distribution is essential to any common definition of fairness. However, in many cases the probability
distribution with respect to which the fairness is defined remains implicit. For example, Zemel et al. (2013) define their
notion of fairness by saying: "We formulate this using the notion of statistical parity, which requires that the probability
that a random element from X+ maps to a particular prototype is equal to the probability that a random element from
X− maps to the same prototype" (where X+ and X− are the two groups w.r.t. which one aims to respect fairness).
However, they do not specify what is the meaning of "a random element". The natural interpretation of these terms is
that "random" refers to the uniform distribution over the finite set of individuals over which the algorithm selects. In
that case, that information varies with each concrete tasks and is not available to the task-independent representation
designer. Alternatively, one could interpret those "random" selections as picking uniformly at random from some
established large training set that is fixed for all tasks. Such randomness may well be available to the representation
designer, but it misses the intention of statistical parity fairness; For example, the fixed training set may have 10,000
individuals from one group and 20,000 from the other group, but when some local bank branch allocates loans it has 80
applicants from the first group and 37 applicants from the other. For the fairness of these loan allocation decisions, the
relevant ratio between the groups is 80/37 rather than the 10,000/20,000 ratio available to the representation designer.

Almost all the work on fair representations focuses on the demographic parity (DP) notion of fairness Edwards &
Storkey (2016); Madras et al. (2018); Zemel et al. (2013); Song et al. (2019). To achieve DP fairness, a classifier
has to induce success ratio between the groups of subjects that match the ratio between these groups in the input data.
However, as demonstrated above, that ratio varies from one application to another and cannot be determined a priori.
We show that any fixed representation that allow expressing non-trivial classification cannot guarantee DP fairness in
the face of shifting marginal (that is, unlabeled) data distribution (see section 4).

When the data marginal distribution w.r.t. which the fairness is defined is fixed and available to the designer of a
representation, then, as shown by Zemel et al. (2013) and followup papers, DP fairness is indeed possible. However, we
further show that even under these assumptions, no data representation can guarantee fairness with respect to notions of
fairness that do rely on the correct ground truth, such as equalized odds (EO) Hardt et al. (2016), for arbitrary tasks (see
Section 4).

To the best of our knowledge this fact also has not been explicitly stated (and proved) before, although it seems that
some of the previous work were aware of this concern; in previous work discussing fair representation w.r.t. notions of
fairness that take the ground truth classification into account, the algorithms that design the representations require
access to task specific labeled data (e.g. Zhang et al. (2018); Beutel et al. (2017); Song et al. (2019); du Pin Calmon
et al.). Such a requirement defies the goal of having a fixed representation that guarantees fairness for many tasks.

The effect of the motivation of the user of the representation on the fairness of the resulting decision rule has been
considered by Madras et al. Madras et al. (2018) and Zhang et al. Zhang et al. (2018). These papers identify two
motivations. The first is malicious, which is the intent to discriminate without regard for accuracy. The second is
accuracy-driven, which is the intent to maximize accuracy. We address these effects as part of our taxonomy of notions
of fair representations.

The question of feature deletion has also been considered in real world examples, such as in the "ban the box" policy
which disallowed employers using criminal history in hiring decisions Doleac & Hansen (2016). The effect of allowing
or disallowing features on fairness has been studied before, for example in Grgic-Hlaca et al. Grgic-Hlaca et al. (2018).
However in previous works, the effect of a feature on fairness, has been discussed in isolation. In contrast, we show
that fairness of a feature should not be considered in isolation, but should also take into account the remaining features
available.
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3 BASIC NOTATION

We consider a binary classification problem with label set {0, 1} over a domain X of instances we wish to classify,
e.g. individuals applying for a loan. We assume the task to be given by some distribution P over X × {0, 1} from
which instances are sampled i.i.d. We denote the ground-truth labeling rule as t : X → [0, 1]. We will think of the
label 1 as denoting ‘qualified’ and the label 0 as ‘unqualified’ and t(x) = P [y = 1|x]. For concreteness, we focus here
on the case of deterministic labeling (that is t : X → {0, 1}) Most of our discussion can readily be extended to the
probabilistic labeling case In a slight abuse of notation we will sometimes use t(w) to indicate the label coordinate of
an instance w ∈ X × {0, 1}.

A data representation is determined by a mapping F : X → Z, for some set Z, and the learner only sees F (x) for
any instance x (both in the training and the test/decision stages). We denote the hypothesis class of all feature based
decision rules as HF = {h : Z → {0, 1}}. As a loss function we consider the 0-1 loss for binary classification. We
denote the true risk with respect to that loss by LP .

3.1 NOTIONS OF GROUP FAIRNESS

For our fairness analysis we assume the population X to be partitioned into two sub-populations A and D (namely,
we restrict our discussion to the case of one binary protected attribute). We sometimes use a function notation
G : X → {A,D} to indicate the group-membership of an instance. Of course in reality there are often many protected
attributes with more than two values. However, as our goal is to show limitations and impossibility results for fair
representation learning, it suffices to only consider one binary protected attribute – the same impossibilities readily
follow for the more complex settings.

We now define two widely used notions of group-fairness that we will refer to throughout the paper, namely, equalized
odds and demographic parity. In the following we will denote with Xg,l the subset of X with label l and group
membership g, i.e. Xg,l = X ∩ t−1(l) ∩G−1(g).

The notion of group-fairness we will focus on in this paper is the ground-truth-dependent notion of odds equality as
introduced by Hardt et al. (2016).

Definition 1 (Group fairness; Equalized odds) A classifier h is considered fair w.r.t. to odds equality (LEO) and
a distribution P if for x ∼ P we have the statistical independence h(x) ⊥⊥ G(x)|t(x). For g ∈ {A,D} let the
false positive rate and the false negative rate be defined as FPRg(h, t, P ) = Px∼P [h(x) = 1|x ∈ Xg,0] and
FNRg(h, t, P ) = Px∼P [h(x) = 0|x ∈ Xg,1] respectively. The EO unfairness is given then by the sum of differences in
false positive rate and false negative rate between groups:

LEO
P (h) =

1

2
|FNRA − FNRD|+ 1

2
|FPRA − FPRD|.

If we say a classifier is fair, without referring to any particular group-fairness notion, we mean fairness w.r.t. equalized
odds.

Definition 2 (Demographic parity) A classifier h is considered fair w.r.t. to demographic parity (LDP) and a distri-
bution P if h(x) ⊥⊥ G(x). The respective unfairness is given by difference in positive classification rates between groups

LDP
P (h) = |Px∼P [h(x) = 1|G(x) = A]− Px∼P [h(x) = 1|G(x) = D]|

.

3.2 THE ROLE OF THE AGENT’S OBJECTIVE

We will phrase our definitions of representation fairness in terms of a general group fairness notion Lfair with unfairness
measure Lfair

P .

Most of this work considers a malicious decision maker who tries to actively discriminate against one group. To protect
against this kind of decision maker, we need to give a guarantee such that based on the feature set it is not possible to
discriminate against one group. This corresponds to the notion of adversarial fairness.

Definition 3 (Adversarial fairness) A representation F is considered to be adversarialy fair w.r.t. the distribution P
and group fairness objective Lfair , if every classifier h ∈ HF is group-fair. We define the adversarial unfairness of a
representation F by Uadv(F ) = maxh∈HF

Lfair
P (h).
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We also consider an accuracy-driven decision maker, who aims to label instances correctly and is agnostic about
fairness. For this kind of decision maker, we only need to make sure that optimizing for correct classification results in
a fair classifier.

The following definition ensures that the Bayes optimal classifier for a representation is fair.

Definition 4 (Accuracy-driven fairness) A representation F is considered to be accuracy-driven fair w.r.t. the fairness
objective Lfair and distribution P , if every classifier h ∈ HF with LP (h) = minh∈HF

LP (h) is group-fair with respect
to this objective. The accuracy-driven unfairness is given by Uacc(F) = max{Lfair

P (h) : h ∈ argminh∈HF
LP (h)}.

We note that in cases where the decision maker does not have access to the distribution P , but only to a labelled
sample, this requirement might not be sufficient for guaranteeing that an accuracy-driven decision maker arrives at a
fair decision.

Notions of fair representation can be defined with respect to any group-fairness notion. We will mainly focus on the
equalized odds notion of fairness Hardt et al. (2016), but also have some results for demographic parity and predictive
rate parity.

4 CAN THERE BE A GENERIC FAIR REPRESENTATION?

We address the existence of a multi-task fair representation. We prove that for the adversarial agent scenario (which
is the setup that most fairness representation previous work is concerned with), it is impossible to have generic
non-trivial fair representations - no useful representation can guarantee fairness for all "downstream" classifications
that are based on that representation (even if the ground truth classification remains unchanged and only the marginal
may change between tasks).

We start by considering scenarios in which only the marginals shift between two tasks, e.g. two openings for different
jobs, requiring similar skills, for which different pools of people would apply. Such a distribution shift can likely affect
one group more than another and would thus affect the classification rates of both groups differently. We show that
we cannot guarantee fairness of a fixed data presentation for general shifts of this kind, even for the simple case of
demographic parity.

Theorem 1 No data representation can guarantee the DP fairness of any non-trivial classifier w.r.t. all possible data
generating distributions (over any fixed domain set with any fixed partition into non-empty groups). That is, for every
non-constant representation F , there exists a distribution P such that F is arbitrarily unfair with respect to LDP and
the task P (say UDP

adv(F ) > 0.9).

We note that one can choose a distribution for this construction which allows for a natural interpretation. That is one
can choose the marginal as a uniform distribution over finitely many points, which can be interpreted as an empirical
distribution over a set of applicants. We further note that while in natural settings it might be unlikely to get a worst
case selection of applicants, any shift in distribution/selection of applicants is likely to impact the fairness of the
representation.

Next we prove a similar theorem for EO-fairness.

Theorem 2 No data representation can guarantee EO fairness of any non-constant predictor based on that representa-
tion for all "downstream" classification learning tasks. Concretely,

1. Given any representation F that is expressive enough to allow classifiers that are not constant on each group,
there is a distribution P over X × {0, 1} such that F is arbitrarily adversarially unfair with respect to LEO

and P (i.e. UEO
adv (F ) ≥ 0.5).

2. Let f be a labeling rule and F any representation that can express a non-constant function that is different
from f and 1− f . Then there exists a marginal PX , such that F is arbitrarily adversarially unfair with respect
to LEO and (PX , f) (i.e., UEO

adv (F ) ≥ 0.5).

The proof of this theorem can be found in the appendix. We again note that this effect occurs for fairly generic
distributions.

The results above showed that there is no representation that can guarantee fairness for an arbitrary task. But what
happens if we limit our discussion to a predefined selection of tasks? We will show that even in this restricted case,
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there can be no representation that guarantees EO fairness with respect to a general predefined selection of tasks. We
say a distribution P has equal success rates for both groups, if both groups have the same conditional probability of
label 1, i.e. P [t(x) = 1|x ∈ A] = P [t(x) = 1|x ∈ D]. We will now state the main result of this section.

Theorem 3 Let P1 and P2 be the distributions defining two different tasks1 with the same marginal PX = P1,X = P2,X

such that both PX(A) ̸= 0 and PX(D) ̸= 0 and at least one of the tasks does not have equal success rates for both
group. There can be no data representation F such that for P1, P2, the following criteria simultaneously hold:

1. F is adversarially fair w.r.t. P1 and EO

2. F is adversarially fair w.r.t. P2 and EO

3. F enables the expression of classifiers that have perfect accuracy w.r.t. to P1 and P2, i.e., there are h1, h2

both expressible over the representation F , such that LP1(h1) = LP2(h2) = 0.

In order to prove this theorem we use the following lemma.

Lemma 1 Pick any set X and a partition of X into two non-empty (disjoint) sets A and D. Let PX be any probability
distribution over X such that both PX(A) ̸= 0 and PX(D) ̸= 0. Let f, g : X 7→ {0, 1} such that PX [{x : f(x) ̸=
g(x)}] /∈ {0, 1}. If f is a EO fair classification w.r.t. (PX , g) (as the labeling rule) and g is a EO fair classification w.r.t.
(PX , f) (as the labeling rule), then PX [f(x) = 1|A] = PX [f(x) = 1|D] and PX [g(x) = 1|A] = PX [g(x) = 1|D].

This lemma can be deduced from the impossibility result of Kleinberg et al. (2016), namely, that a classifier cannot
fulfill predictive rate parity and equalized odds in cases in which there is a difference in success rates between the
two groups. For that, note that the condition of two classifiers f and g being EO fair with respect to each other as the
labeling rule is equivalent to f being EO fair and having predictive rate parity with respect to some underlying task with
labeling rule g.

For completeness, we provide a direct proof of the lemma in the Appendix 8.

Now we can prove our theorem.

Proof of Theorem 3: Towards a contradiction, let us assume that F was adversarially EO fair with respect to both P1

and P2 and that both h1 and h2 can be expressed by the representation. This implies that both h1 and h2 need to be EO
fair with respect to P1 and P2. From Lemma 1, we know that this implies that PX [h1(x) = 1|A] = PX [h1(x) = 1|D]
and PX [h2(x) = 1|A] = PX [h2(x) = 1|D] or that PX [{x : h1(x) ̸= h2(x)}] = 0. However, we have assumed that
PX [{x : h1(x) ̸= h2(x)} ≠ 0 and that P1 or P2 do not have equal success rates of groups. This concludes our proof.

5 IMPOSSIBILITY OF ADVERSARIALLY FAIR REPRESENTATIONS WITH RESPECT TO
PREDICTIVE RATE PARITY

We now show that not all common notions of group fairness always allow a adversarially fair representation, even in a
single-task setting. One such notion is predictive rate parity.

Definition 5 (Predictive rate parity (PRP)) A classifier h is considered PRP fair w.r.t. to a marginal data distribution
P and true classification t if the random variable t(x) is independent of the group membership, G(x) given the
classification h(x). We denote this fairness objective with LPred.

Theorem 4 Adversarial fairness w.r.t. P and LPred is only possible, if P has equal success rates for both groups.

Proof of Theorem 4: We note that in order to achieve adversarial fairness with respect to any representation, the
all-one classifier needs to be fair, as any representation F admits any constant classifier. We furthermore note that the
all-one classifier is fair with respect to predictive rate parity if and only if the ground truth has equal success rates. This
shows our claim.

1Namely, their labeling rules are different from each other and are not the exact opposite of each other. Formally, both
{x : P1[y = 1|x] ̸= P2[y = 1|x]} and {x : P1[y = 1|x] ̸= P2[y = 0|x]} have nonzero probability under the joint marginal
distribution.
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6 FAIRNESS OF A FEATURE SET VS. FAIRNESS OF A FEATURE

In this section we discuss feature deletion and its impact on the fairness of a representation. For this we assume our
representation F to consist of finitely many features fi : X → Yi i.e. for every x ∈ X : F (x) = (f1(x), . . . , fn(x))
and Z = Y1 × · · · × Yn. We limit our discussion to cases where all Yi are finite. While this assumption facilitates
our analysis, similar results can be shown in the cases of continuous features. We will denote the set of features as
F = {f1, . . . , fn}. Unless otherwise stated, we focus on the equalized Odds (EO) notion of group fairness. We denote
by Uadv(F) and Uα

acc(F) the adversarial and accuracy-driven EO fairness of the representation induced by the feature
set F respectively. We show that it is in general not possible to determine the effect a single feature has on the fairness
of a representation without considering the full representation. This is the case even if the considered feature is not
correlated with the protected attribute.

6.1 OPPOSING EFFECTS OF A FEATURE FOR ACCURACY-DRIVEN FAIRNESS OF A REPRESENTATION

We start our discussion with accuracy-driven fairness w.r.t. equalized odds. In this case we show that the deletion of
a feature f can lead to an increase in accuracy-driven unfairness for some set of other given features F and that the
deletion of the same feature f can lead to a decrease in accuracy-driven unfairness for another set of other available
features F ′. This implies that the fairness of the feature f cannot be evaluated without context. We show that this
phenomena holds for a general class of features that satisfy some non-triviality properties (That on the one hand do
not reveal too much information about group membership and labels (non-committing), and on the other hand do not
reveal identity when label and group information is given (k-anonymity Samarati & Sweeney (1998))). We will start by
stating the non-triviality requirements for our theorem.

NON-TRIVIALITY PROPERTIES

Definition 6 We define the following two non-triviality requirements for a feature:

1. Non-committing We will call a feature non-committing if it leaves some ambiguity about label and group
membership. That is, a feature f is non-committing if there are two distinct values y1 and y2, such that f
assigns each of these values to at least one instance of each XA,0, XA,1, XD,1, XD,0. i.e. f−1(y1) ∩Xi ̸= ∅
and f−1(y2) ∩Xi ̸= ∅ for every Xi ∈ {XA,0, XA,1, XD,1, XD,0}

2. k-anonymity A feature f is k-anonymous if knowing this feature, group-membership and label, will only
reveal identity of an individuals up to a set of at least k individuals. Namely, for every combination of value of
this feature, group membership and class label, there are either no instances satisfying this combination or
there are at least k many such instances.

Theorem 5 (Context-relevance for fairness of features) For every 2-anonymous non-committing feature f , there exists
a probability function P over X and feature sets F and F ′ such that:

• The accuracy-driven fairness w.r.t LEO and P of F ∪ {f} is greater than that of F , i.e.

Uacc(F ∪ {f}) < Uacc(F)

Thus, deleting f in this context will increase unfairness.

• The accuracy-driven fairness w.r.t LEO and P of F ′ ∪ {f} is less than that of F ′, i.e.

Uacc(F ′ ∪ {f}) > Uacc(F ′)

Thus, deleting f in this context will decrease unfairness.

We note that this phenomenon can occur for quite general pairs (f, P ) and that we mainly need to exclude pathological
cases for our construction to work. In particular we want to note that this phenomenon can occur even if f is uncorrelated
with the group membership and the label for ground-truth distribution P . We will give an example illustrating our last
point and will refer the reader for the proof and a general discussion of the requirements on (f, P ) to the appendix.
Before giving our example, we need to introduce some concepts.

Feature-induced cells A set of features F = {f1, . . . , fn} induces an equivalence relation ∼F , by x ∼F iff fi(x) =
fi(y) for all i = 1, . . . , n. We call the equivalence classes with respect to ∼F cells and denote the set of cells
for a featureset F as CF .
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Ground-truth score function We define the ground truth score function st : CF → [0, 1]. sPt (C) is the probability,
w.r.t. P , of x ∈ C having the true-label 1, i.e.,

sPt (C) = Ex∼P [t(x)|x ∈ C].

In cases where the distribution is unambiguous we will use the abbreviated notation st instead of sPt .

Bayes-optimal predictor The predictor in HF that minimizes LP is the Bayes Optimal predictor tP,F that for a cell
C ∈ CF assigns the label 1 if st(C) > 0.5 and 0 otherwise.

We will now give an example in which both f and F are adversarially fair w.r.t. P and in which the phenomenon from
Theorem 5 holds.

Example 1 Let the domain X = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12} with XA,1 = {x1, x2, x3}, XD,1 =
{x4, x5, x6}, XA,0 = {x7, x8, x9}, and XD,0 = {x10, x11, x12}. Furthermore consider the uniform distribu-
tion P over X , i.e. P ({x}) = 1

12 for every x ∈ X . For the construction of the feature set, we only con-
sider binary features fi : X → {0, 1}. Now let f be defined by f−1(1) = {x1, x5, x8, x12}. Furthermore, let
F = {f1, f2, f3} and F ′ = {f ′

1, f
′
2} with f−1

1 (1) = {x1, x2, x3, x5, x8, x12}, f−1
2 (1) = {x1, x2, x3, x5, x11, x12},

f−1
3 (1) = {x1, x4x5, x6, x7, x11},f ′

1
−1(1) = {x1, x4, x7, x10} and f ′

2
−1(1) = {x1, x2, x4, x5, x7, x8, x10, x11}. The

resulting cells for F and F ′ are

CF = {{x1, x5}, {x2, x3, x12}, {x8}, {x4, x6, x7}, {x9}, {x10, x11}}

and
CF ′ = {{x1, x4, x7, x10}, {x2, x5, x8, x11}, {x3, x6, x9, x12}}.

It is easy to see that F ′ and {f} are adversarially fair w.r.t. P and LEO. Furthermore, we have:

Uacc(F ∪ {f}) = 1

2
|3
3
− 2

3
|+ 1

2
|2
3
− 1

3
| = 1

3
> 0 = Uacc(F)

and

Uacc(F ′ ∪ {f}) = 1

2
|3
3
− 3

3
|+ 1

2
|1
3
− 1

3
| = 0 <

1

6
=

1

2
|3
3
− 3

3
|+ 1

2
|1
3
− 0

3
| = Uacc(F ′).

Thus we see that there are indeed features f which are adversarially fair w.r.t. P and equalized odds, for which there is
this opposing effect of feature deletion.

6.2 THE FAIRNESS OF A FEATURE DEPENDENT ON AGENT’S OBJECTIVE

We will now briefly discuss the effect of a single feature on fairness for the case of an adversarial agent. In contrast
to the accuracy-driven case, adding features has a monotone effect on the fairness of a malicious decision maker. We
show in Theorem 6 that adding any feature in the adversarial case, will only give the decision maker more information
and thus give the decision maker more chances of discrimination. However, the quantitative effect of adding a feature
on the unfairness can still range from having no effect to achieving maximal unfairness. As in the accuracy-driven
case, we will show (Theorem 6) that it is impossible to evaluate the quantitative effect of a feature on the fairness of a
representation without considering the context of other available features.

Theorem 6 1. For any feature f and any featureset F we have Uadv(F) ≤ Uadv(F ∪ {f}).

2. For every distribution P and feature f , there exists a feature set F , such that adding f will not impact the
fairness of the distribution, e.g. Uadv(F) = Uadv(F ∪ {f}).

3. There exist distributions P , features f and F ′, such that Uadv(F ′) = 0 and Uadv({f}) = 0, but Uadv(F ′ ∪
{f}) = 1 .

While this section focused on fairness with respect to equalized odds, we note that many of these results can be replicated
for other notions of fairness. In particular, an analogous statement to Theorem 6 can be made for demographic parity.
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7 CONCLUSION

While many papers in this domain propose algorithmic solutions to fairness related issues, the main contributions of this
paper are conceptual. We believe that, to a much larger extent than many other facets of machine learning, fundamental
concepts of fairness in machine learning require better understanding. Some basic questions are still far from being
satisfactorily elucidated; What should be considered fair decision making? (various mutually incompatible notions
have been proposed, but how to pick between them for a given real life application is far from being clarified). What is
a fair data representation? To what extent should accuracy or other practical utilities be compromised for achieving
fairness goals? and more. The answers to these questions are not generic. They vary with the principles and the goals
guiding the agents involved (decision makers, subjects of such a decision, policy regulators, etc.), as well as with what
can be assumed regarding the underlying learning setup. We view these as the primary issues facing the field, deserving
explicit research attention (in addition to the more commonly discussed algorithmic and optimization aspects).

Our main result addressed the existence of generic fair representations. We show that even label-independent fairness
notions like demographic parity are vulnerable to shifts in marginals between tasks. For fairness notions that do rely
on the true classification, we show that fairness and accuracy cannot be simultaneously achieved by the same data
representation for any two different tasks even if they are defined over the same marginal (unlabeled) data distributions.
We conclude the impossibility of having generic data representations that guarantee (even just) DP fairness with respect
to tasks whose marginal distributions are not accessible when designing the representation.

These insights stand in contrast to the impression arising from many recent papers Madras et al. (2018); Edwards &
Storkey (2016); McNamara et al. (2019); Song et al. (2019); Creager et al. (2019); Madras et al. (2018) that claim to
learn transferable fairness-ensuring representations.

Furthermore, we showed that some fairness notions, like predictive rate parity, do not always allow an adversarially fair
representation, even if it is just for a single task.

Lastly, we also considered the question of "fairness of a feature", which has been used in legal scenarios. We showed
that the fairness of a single feature is an ill defined notion. Namely, the impact of a feature on the fairness of a decision
cannot be determined without considering the other features of the representation2

One obvious direction for further research is extending our impossibility results to quantitative accuracy-fairness
trade-offs and bounds on what a data representation can guarantee over multiple tasks as a function of appropriate
measures of task similarities.

Our impossibility results imply that claims about representations aimed to guarantee fairness should come with
specifications of the scope of tasks/ distributions for which those guarantees apply. Ideally, the property of whether the
representation is (approximately) fair with respect to a given task could be tested based on samples of a bounded size.
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APPENDIX

ADDITIONAL REMARKS ON THEOREM 5

Theorem 5 stated that every feature f fulfilling some non-triviality requirements, there exists a distribution P and
feature sets F and F ′ such that adding f to either of the feature sets has opposing effects on the accuracy-driven
fairness of the respective representations. We will now state a condition on f and P for this phenomenon to occur. It
will be easy to see that this condition is fulfilled for a very general class of distributions and features, only excluding
pathological examples.

Definition 7 In the following let l1 ∈ {0, 1} denote a label and G1 ∈ {A,D} a group. The opposing label and group
will be denoted by l2 and G2 respectively. A pair (f, P ) of a feature f and a distribution P is called generic if there
exist sets C1, C2, C3 ⊂ X with the following properties.

1. P (C1) > P (C2)

2. C1 and C2 are separated by the feature f , i.e. there are y1 ̸= y2 such that C1 ⊂ f−1(y1) and C2 ⊂ f−1(y2)

3. C1 and C2 are label-homogeneous for different labels and C2 is group homogeneous, i.e. C1 ⊂ t−1(l1) and
C2 ⊂ XG1,l2 .

4. C3 is not split by the feature, i.e. there is y3 such that C3 ⊂ f−1(y3)

5. C3 has the same majority label as C1, i.e. P (t−1(l1) ∩ C3) ≥ P (t−1(l2) ∩ C3)

6. The fraction of elements of group G2 and label l2 in C3 is sufficiently big in comparison to C2, i.e.
P (C3∩XG2,l2

)

P (XG2,l2
) ≥ P ((C2∪C3)∩XG1,l2

)

P (XG1,l2
) .

Lemma 2 For every pair generic feature-distribution pair (f, P ), there are two feature sets F and F ′

• The accuracy-driven fairness w.r.t LEO and P of F ∪ {f} is greater than that of F , i.e.

Uacc(F ∪ {f}) < Uacc(F)

Thus, deleting f in this context will increase unfairness.

• The accuracy-driven fairness w.r.t LEO and P of F ′ ∪ {f} is less than that of F ′, i.e.

Uacc(F ′ ∪ {f}) > Uacc(F ′)

Thus, deleting f in this context will decrease unfairness.

Proof: We define F as a representation which separates everything but a cell C ′ = C1 ∪ C2 by labels. For such
a representation F ∪ {f} enables perfect accuracy and therefore perfect fairness. However F is constructed that
the optimal classifier with respect to 0-1 loss is unfair, as only elements of XG1,l2 are misclassified. Furthermore
we can define F ′ as a representation that separates all but two cells C ′ = C1 ∪ C2 and C ′′ = C3 perfectly by
labels. As the only misclassification of Bayes classifier tP,F ′∪{f} occurs on C3 and it labels tP,F ′∪{f} = l it has

unfairness LEO
P (tP,F ′∪{f}) =

1
2 |

P (C3∩XG2,l2
)

P (XG2,l2
) − P (C3∩XG1,l2

)

P (XG1,l2
) |. Furthermore the only misclassification for the Bayes

classifier tP,F ′ occurs on C2 and C3 which are both labeled as l, yielding the unfairness tP,F ′ = l it has unfairness
LEO
P (tP,F ′) = 1

2 |
P (C3∩XG2,l2

)

P (XG2,l2
) − P ((C2∪C3)∩XG1,l2

)

P (XG1,l2
) |. As P ((C2∪C3)∩XG1,l2

)

P (XG1,l2
) >

P (C3∩XG1,l2
)

P (XG1,l2
) , by property (6.) of

Definition 7, we thus get LEO
P (tP,F ′∪{f}) > LEO

P (tP,F ′), concluding our proof.

Lemma 3 For every non-committing, 2-anonymous feature f , there exists a distribution P , such that the pair (f, P ) is
generic.

Proof: We need to show that it is possible to define three sets C1, C2, C3, C4 ⊂ X and a distribution P such that the
requirements of Definition 7 are fulfilled. From the fact that f is non-committing we know that there are y1, y2 such that
none of the subsets f−1(y1) ∩Xi and f−1(y2) ∩Xi is empty for any Xi ∈ {XA,0, XA,1, XD,1, XD,0}. We can thus
define the non-empty set B = f−1(y2)∩XA,0. Furthermore, we know that f is also 2-anonymous and thus we can split
B further into two non-empty subsets C2 and C4. Furthermore, we can define C1 and C3 as disjoint non-empty subsets
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of f−1(y1), such that C1 ⊂ f−1(y1) ∩ t−1(1) and such that C3 ∩Xi ̸= ∅ for any Xi ∈ {XA,0, XA,1, XD,1, XD,0}.
Thus the properties (2.), (3.) and (4.) of the non-generic definition are fulfilled for the sets C1, C2, C3.

We can now choose P to pick probability weights as follows:

• P (C1) = 0.2

• P (C2) = 0.1

• P (C3 ∩ t−1(1)) = 0.3

• P (C3 ∩XD,0) = 0.2

• P (C4) = 0.2

Clearly (1.) is fulfilled as P (C1) = 0.2 > 0.1 = P (C2). Furthermore (5.) is fulfilled as, P (C3 ∩ t−1(1)) = 0.3 >
0.2 = P (C3 ∩XD,0) = P (C3 ∩ t−1(0)). Lastly, (6.) is fulfilled as:

P (C3 ∩XD,0)

P (XD,0)
= 1 <

1

3
=

P (C2 ∩XA,0)

P (XA,0)

PROOFS

Proof of Theorem 1:

Pick any domain set X and any partition of X into non-empty subsets A,D. We first show that for every non-constant
function f : X → {0, 1} there exists a probability distribution P over X such that f is arbitrarily DP-unfair w.r.t. P
(i.e., LDP

P (h) > 0.9).

If f is constant on any of the groups A or D then, since f is not a constant over X there are points in the other group on
which f has the opposite value. Thus, from f not being constant, we can conclude that there are two labels y1 ̸= y2,
such that the sets {x ∈ A : f(x) = y1} and {x ∈ D : f(x) = y2} are both non-empty. Now we choose the marginal
PX to assign probability 0.5 to {x ∈ A : f(x) = y1} and probability 0.5 to {x ∈ D : f(x) = y2}. Clearly f fails DP
w.r.t. this P .

Now if a representation F is non-constant, it allows some non-constant function f using that representation. Thus no
non-constant representation can fulfill adversarial demographic parity with respect to every distribution P .

Proof of Theorem 2:

We note that 1.) follows directly from 2.) and will now show 2.). We know that F can express a non-constant classifier
h : X → {0, 1} with h ̸= f and h ̸= 1− f (that is, for some x ∈ X , f(x) = h(x)). We will now show that there exists
a marginal PX , such that h has high unfairness with respect to LEO and P = (PX , f), (i.e. LEO

P (h) ≥ 0.5).

Let f : X → {0, 1} be any non-constant function and h : X → {0, 1} be any non-constant classifier with h ̸= f, 1− f .
Then we know that at least three of the four sets {x ∈ X : f(x) = 1, h(x) = 0}, {x ∈ X : f(x) = 0, h(x) = 1} ,
{x ∈ X : f(x) = 1, h(x) = 1} and {x ∈ X : f(x) = 0, h(x) = 0} are non-empty. Thus, there exist two sets B1 and
B2 among these sets, on which the ground truth function f assigns the same label. That is, for every x1 ∈ B1 and every
x2 ∈ B2 we have f(x1) = f(x2). W.l.o.g. B1 = {x ∈ X : f(x) = 1, h(x) = 0}, B2 = {x ∈ X : f(x) = 1, h(x) =
1}. Let B3 be the remaining of the three sets that are guaranteed to be non-empty. We note, that for any set B, we
have B = (B ∩A) ∪ (B ∩D). Thus for a non-empty set B, B ∩A = ∅ implies B ∩D ̸= ∅ and B ∩D = ∅ implies
B ∩A ̸= ∅. We thus get a distinction into the following cases:

• Case 1: B1 ∩ A ̸= ∅ and B2 ∩ D ̸= ∅. Then we can choose the marginal PX as PX(B1 ∩ A) = 0.5 and
PX(B2 ∩D) = 0.5. Yielding, LEO

P (h) = 0.5

• Case 2: B2 ∩A ̸= ∅ and B1 ∩D ̸= ∅: Analogous to Case 1

• Case 3: there is G ∈ {A,D}, such that B1 ∩ G = B2 ∩ G = ∅. W.l.o.g. G = A. Then B3 ∩ A ̸= ∅
and B1 ∩ D ̸= ∅ and B2 ∩ D ̸= ∅. In this case we can choose the marginal as PX(A ∩ B3) = 0.5 and
PX(D∩B1) = 0.5. Then all elements of D will be misclassified and all elements of A will either be classified
correctly or be misclassified in the opposite direction, yielding to high EO unfairness. (In the case where the
ground truth labeling is constant on one group, we define the misclassification rate with respect to the label it
will not achieve to be zero. Then we get LEO

P (h) ≥ 0.5.)
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Lastly, LEO
P (h) ≥ 0.5 implies UEO

adv (F ) ≥ 0.5, concluding our proof.

Proof of Lemma 1: Consider the following four sets: S = {x : f(x) = 1, g(x) = 0},
T = {x : f(x) = 1, g(x) = 1}, U = {x : f(x) = 0, g(x) = 1}, V = {x : f(x) = 0, g(x) = 0}.

Let SA, TA, UA, VA, denote the intersections of these sets with the set A, (e.g., SA = S ∩A), and similarly, SD, TD,
UD, VD, denote the intersections of these sets with the set D. Notice that

• P [f(x) = 1|A] = P (SA)+P (TA)
P (A) .

• P [f(x) = 1|D] = P (SD)+P (TD)
P (D) .

• P [g(x) = 1|A] = P (TA)+P (UA)
P (A) .

• P [g(x) = 1|D] = P (TD)+P (UD)
P (D) .

It follows that once one shows that each of these quantities can be expressed in terms of the false positive and false
negative rates when each of f or g is considered the true classification and the other as the predicted labeling, then the
conclusion of the lemma is implied by its EO assumptions.

Using the above notation, when f is the true classification,

FPRA(g, f, P ) = P (UA)
P (VA)+P (UA) and FNRA(g, f, P ) = P (SA)

P (SA)+P (TA) (and similarly for D).

And when the true classification is g,

FPRA(f, g, P ) = P (SA)
P (VA)+P (SA) and FNRA(f, g, P ) = P (UA)

P (UA)+P (TA) (and similarly for D).

We will start with the case where all eight sets UA, VA, SA, TA and UD, VD, SD, TD are non-empty. We note, that
in this case equalized false positive rates and false negative rates of f with respect to g gives us the following two
equations,

P (UA)

P (VA) + P (UA)
=

P (UD)

P (VD) + P (UD)
,

and
P (SA)

P (SA) + P (TA)
=

P (SD)

P (SD) + P (TD)
.

This implies that there are two constants β1, β2 with P (UA) = β1P (VA) and P (UD) = β1P (VD) and P (SA) =
β2P (TA) and P (SD) = β2P (TD).

Furthermore, g being EO fair with respect to f gives us

P (SA)

P (VA) + P (SA)
=

P (SD)

P (VD) + P (SD)
,

and
P (UA)

P (UA) + P (TA)
=

P (UD)

P (UD) + P (TD)
.

This implies that there is a constant β3 such that P (VA) = β3P (SA) and P (VD) = β3P (SD).

Thus,

P [f(x) = 1|A] =
β2 + 1

β2 + 1 + β3β2(1 + β1)
= P [f(x) = 1|D],

and
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P [g(x) = 1|A] =
1 + β1β2β3

β2 + 1 + β3β2(1 + β1)
= P [g(x) = 1|D].

The cases in which one or several of these sets are empty can be shown in an analogous way. This proves our claim.

Proof of Theorem 5: The result follows directly from Lemma 3 and Lemma 2.

Proof of Theorem 6:

1. We note that HF ⊂ HF∪{f}. Thus any argminh∈HF LEO
P (h) ≤ argminh∈HF∪{f} L

EO
P (h), proving the

inequality for adversarial fairness.

2. For any distribution P and feature f we can choose a representation F such that CF = CF∪{f}. It is obvious
that the fairness will not change between those representations.

3. The following example establishes the second claim: Consider the domain X =
{x1, x2, x3, x4, x5, x6, x7, x8} with XA,1 = {x1, x2} ,XD,1 = {x3, x4}, XA,0 = {x5, x6}
and XD,0 = {x7, x8},. Furthermore let F = {f1, f2} with f−1

1 (1) = {x1, x3, x5, x7} and
f−1
2 (1) = {x1, x4, x5, x8}. Furthermore let P be uniform over X ,i.e. P ({x1}) = P ({x2}) =
P ({x3}) = P ({x4}) = P ({x5}) = P ({x6}) = P ({x7}) = P ({x8}) = 0.125. Thus, we have adversarial
fairness w.r.t. EO for both features, i.e.

P (XA,1 ∩ f−1
1 (1))

P (t−1(1) ∩ f−1
1 (1))

=
P ({x1})

P ({x1, x2})
= 0.5 =

P ({x3})
P ({x3, x4})

=
P (XD,1 ∩ f−1

1 (1))

P (t−1(1) ∩ f−1
1 (1))

.

P (XA,0 ∩ f−1
1 (1))

P (t−1(0) ∩ f−1
1 (1))

=
P ({x5})

P ({x5, x6})
= 0.5 =

=
P ({x7})

P ({x7, x8})
=

P (XD,0 ∩ f−1
1 (1))

P (t−1(0) ∩ f−1
1 (1))

.

P (XA,1 ∩ f−1
2 (1))

P (t−1(1) ∩ f−1
2 (1))

P ({x1})
P ({x1, x2})

= 0.5 =

=
P ({x4})

P ({x3, x4})
=

P (XD,1 ∩ f−1
2 (1))

P (t−1(1) ∩ f−1
2 (1))

.

P (XA,0 ∩ f−1
2 (1))

P (t−1(0) ∩ f−1
2 (1))

P ({x5})
P ({x5, x6})

= 0.5

=
P ({x8})

P ({x7, x8})
=

P (XD,0 ∩ f−1
2 (1))

P (t−1(0) ∩ f−1
2 (1))

.

However, the featureset F does not have adversarial fairness w.r.t. EO: CF = {C1, C2, C3, C4} with C1 =
{x1, x5}, C2 = {x2, x6}, C3 = {x3, x7}, and C4 = {x4, x8}. Consider the classifier h ∈ HF with h−1(1) =

{C1, C2}. Then LEO
P (h) = 1

2

∑
l∈{0,1}

∣∣∣P (h−1(|1−l|)∩XA,l)
P (XA,l)

− P (h−1(|1−l|)∩XD,l)
P (XD,l)

∣∣∣ = 1
2 (|1−0|+ |0−1|) = 1.

Thus UEO
adv (F) = 1.
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CHARACTERIZATIONS OF DIFFERENT NOTIONS OF FAIR REPRESENTATIONS

In this section we characterize accuracy-driven and adversarial representation fairness w.r.t. the odds equality notion of
classification fairness. We will start by introducing a property we call zero-group knowledge. It is aimed to prevent
an adversary from inferring the group membership from the representation, when given access to the ground-truth
labels. To ensure that an adversarial agent won’t be able to infer group-membership, one would of course require the
representation to have demographic parity. However, in situations where label information is correlated with group
membership, demographic parity of all features will hurt classification accuracy. In such cases, zero-group-knowledge
might be a better tool for concealing group-information.

We will then see that this property is closely related to adversarial fairness.

Definition 8 (Zero-group-knowledge) A representation F has zero-group-knowledge w.r.t.
a distribution P , if for x ∼ P , knowing the feature vector F (x) will not reveal more information about the group
membership G(x) than knowing just the ground truth, t(x). Namely, G(x) ⊥⊥ F (x)|t(x).

It turns out that this property is equivalent to adversarial fairness with respect to equalized odds.

Theorem 7 A representation F has zero-group knowledge w.r.t. P if it has adversarial fairness w.r.t to P and the
group-fairness measure LEO.

A similar observation has been made and shown by Zhang et al Zhang et al. (2018), relating the optimization criteria
for the goal of concealing group-membership and preventing unfair classification with respect to equalized odds in a
representation learning setting with GANs.

We will now give a characterization of accuracy-driven and worse-case fairness in terms of the conditional distributions
given label and group-membership over the cells CF of a finite feature set F . In the following we will denote the
conditional probabilities given label l and group G as PG,l. We will see that a representation is adversarially fair, if
and only if the conditional probabilities are aligned. It has already been shown in Zhao et al. (2019) that if conditional
probabilities are aligned over a representation, every classifier based on that representation is fair. We go a step further
here, by noting, that this is indeed a necessary condition for adversarial fairness.

Theorem 8 A feature set F is adversarially fair w.r.t. distribution P if and only if for each cell C ∈ CF and for each
l ∈ {0, 1} we have PA,l(C) = PD,l(C).

We now give a similar statement for accuracy enforced fairness. Here, the same statement holds, if instead of considering
the probability distributions over the set of cells CF , we consider the set of cells that results from merging all cells of
the same score:

Definition 9 (Score-induced cells) For a set of cells CF , the corresponding set of score-induced cells CF st is the set
of cells that is obtained by merging all cells with the same score together. More formally, each feature set and scoring
function, induce an equivalence relation ∼F,st , such that x ∼F,st y if and only if there are cells Cx, Cy ∈ CF such
that x ∈ Cx, y ∈ Cy and st(Cx) = st(Cy). The set CF st is then defined as the set of ∼F,st equivalence classes.

Theorem 9 A feature set F is accuracy-driven fair w.r.t. distribution P if and only if for each cell in the score-induced
C ∈ CF st and for each l ∈ {0, 1} we have PA,l(C) = PD,l(C).

We can now bound the unfairness in terms of accuracy-driven and adversarial fairness of a representation by the
distribution distance of conditional probabilities. For this we take the H-distance as introduced by Ben-David et al.
(2010).

Definition 10 (H-distance) Given two distributions P and Q over X, we define their H-distance by

dH(P,Q) = sup
1B∈H

|P (B)−Q(B)|,

where 1B denotes the indicator function of set B.

In the following let Hthres
CF ,st

= {h : CF → {0, 1} : for some α, h(C) = 0 iff st(C) < α} be the class of all classifiers
that are a threshold in the ground-truth scoring. We can now state a quantitative theorem about the relation between the
conditional alignment and the fairness of a representation:
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Theorem 10 We can bound adversarial fairness and accuracy enforced fairness of a feature set F w.r.t. P and LEO by
the dHF -difference and dHthres

CF ,st
-difference of conditional distributions respectively:

Uadv(F) ≤ 1

2
dHF (PA,1, PD,1) +

1

2
dHF (PA,0, PD,0)

Uacc(F) ≤ 1

2
dHthres

CF ,st
(PA,1, PD,1) +

1

2
dHthres

CF ,st
(PA,0, PD,0)

Furthermore, we can lower bound the adversarial fairness of a representation by
1

2
dHF (PA,l, PD,l) ≤ Uadv(F)

for every l ∈ {0, 1}

Note that for both bounds there exist probability distributions P such that equality holds in all cases. Furthermore we
note that since the H-distance between two distributions can be estimated, if H has a finite VC-dimension Ben-David
et al. (2010), we can estimate both the upper and the lower bound with a sample size dependent on |CF |, when given
access to i.i.d. samples from PA,1, PD,1, PD,0 and PA,0 each.

From Theorem 4 we know that there are distributions for which there is no representation that has adversarial fairness
with respect to predictive rate parity. In cases, where such a adversarial representation is achievable, however, we can
characterize it by the following natural requirement on the representation, as we will see in the following theorem.

Definition 11 A feature set F has calibration parity w.r.t. a distribution P if for every cell C ∈ CF both groups have
equal success probability. Equivalently, one can say that for a random instance x ∈ P the ground truth labeling
t(x) and the group membership G(x) are statistically independent, when the feature vector F (x) of x is known, i.e.
G(x) ⊥⊥ t(x)|F (x).

Theorem 11 A feature set F has calibration parity w.r.t. P if it has adversarial fairness w.r.t P and the group-fairness
measure LPred. The other direction does not hold. In particular, adversarial fairness w.r.t. P and LPred is only possible,
if P has equal success rates for both groups

Theorem 12 A feature set F has demographic parity w.r.t. P if and only if it has adversarially fair w.r.t P and the
group-fairness objective LDP.

IMPACT OF A FEATURE ON FAIRNESS FOR OTHER GROUP FAIRNESS NOTIONS

We can make another observation about the impact of feature deletion on unfairness for other notions of group fairness.

Observation 1 • There exists a distribution P and a feature set F such that each f ∈ F the feature set {f}
has zero-group-knowledge w.r.t. P , but F is not and Uadv(F) = 1

• There exists a distribution P and a feature set F such that each f ∈ F , the feature set {f} has demographic
parity w.r.t. P , but F has not. Furthermore the group-membership can be perfectly determined by F , i.e. for
every cell C ∈ CF we have

Px∼P [x ∈ A|x ∈ C] ∈ {0, 1}

• There exists a distribution P and a feature set F such that each f ∈ F , the feature set {f} has calibration
parity w.r.t. P , but F has not. Furthermore the scores for the different groups in each cell are perfectly
opposed, i.e. C ⊆ A or C ⊆ D.

PROOFS

A feature set F has zero-group knowledge w.r.t. P if it has adversarial fairness w.r.t to P and the group-fairness measure
LEO. Proof of Theorem 7:

P (h−1(1) ∩XG,l)

P (XG,l)
=

∑
C∈CF :C∈h−1(1) P (h−1(1) ∩XG,l)

P (XG,l)
=

∑
C∈CF :C∈h−1(1)

P (C ∩XG,l)

P (XG,l)

=
∑

C∈CF :P (C∈h−1(1)

P (C ∩ t−1(l))

P (t−1(l))
=

P ((h−1(1) ∩ t−1(l))

P (t−1(l))
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Thus any hypothesis h ∈ HF is fair w.r.t. to the odds equality notion of fairness.
Assume F does not have zero-group-knowledge. Thus F (x) and G(x) are dependent given the ground truth
t(x). Thus there exists label l ∈ {0, 1}, group G ∈ {A,D} and a cell C ∈ CF with P (C∩XG,l)

P (XG,l)
̸= P (C∩t−1(l))

P (t−1(l)) .

Now consider the hypothesis class h defined by h−1(1) = C. For this hypothesis we have P (h−1(1)∩XG,l)
P (XG,l)

̸=
P (h−1(1)∩t−1(l))

P (t−1(l)) . Thus, not every hypothesis h ∈ HF fulfills equalized odds.

A feature set F is adversarially fair w.r.t. distribution P if and only if for each cell C ∈ CF and for each l ∈ {0, 1} we
have PA,l(C) = PD,l(C). Proof of Theorem 8:

Assume F is adversarially fair w.r.t. to P and LEO. This means that every h ∈ HF is fair w.r.t to LEO. Now
take any cell C ∈ CF and let h be defined by h−1(1) = C. Then we know that P (XA,1∩C)

P (XA,1)
=

P (XD,1∩C)
P (XD,1)

and
P (XA,0∩C)
P (XA,0)

=
P (XD,0∩C)
P (XD,0)

. Thus, for each l ∈ {0, 1} we have PA,l(C) = PD,l(C).

Now assume, we have for each l ∈ {0, 1} we have PA,l(C) = PD,l(C). Then for any h ∈ HF , we get

P (XA,l ∩ h−1(1))

P (XA,l)
=

∑
C∈h−1(1)

P (XA,l ∩ C)

P (XA,l)
=

=
∑

C∈h−1(1)

P (XD,l ∩ C)

P (XD,l)
=

P (XD,l ∩ h−1(1))

P (XD,l)
.

Thus LEO
P (h) = 0.

A feature set F is accuracy-driven fair w.r.t. distribution P if and only if for each cell in the score-induced C ∈ CF st
and for each l ∈ {0, 1} we have PA,l(C) = PD,l(C). Proof of Theorem 9: "Conditional probabilities over score-cells
align" implies "representation is accuracy-driven fair": We know for every cell C ∈ CF st

Px∼P [x ∈ C|x ∈ A, t(x) = 0] = Px∼P [x ∈ C|x ∈ D, t(x) = 0]

and

Px∼P [x ∈ C|x ∈ A, t(x) = 1] = Px∼P [x ∈ C|x ∈ D, t(x) = 1].

Thus for every threshold α ∈ [0, 1], we have Px∼P [tP,F (x)|x ∈ A, t(x) = 1] = Px∼P [tP,F (x)|x ∈ D, t(x) = 1]
and Px∼P [tP,F (x)|x ∈ A, t(x) = 0] = Px∼P [x ∈ C|x ∈ D, t(x) = 0]. This implies equal false-positive and
false-negative rates and therefore group fairness.

" conditional probabilities over score-cells do not align" implies "representation is not accuracy-driven fair": We assume
that the conditional probabilities over score induced cells are not aligned. Let CF score = {C1, . . . Ck′} such that
st(Ci) < st(Cj) for every i < j. Thus, Ci ∈ CF st with Px∼P [x ∈ C| ∈ A, t(x) = 0] ̸= Px∼P [x ∈ Ci|x ∈ D, t(x) =
0] or Px∼P [x ∈ Ci| ∈ A, t(x) = 1] ̸= Px∼P [x ∈ Ci|x ∈ D, t(x) = 1]. Now consider the threshold classifier with
threshold st(Ci). We can consider two cases:

•• Case 1:
P (t

s(Ci)

P,F
−1(0)∩XA,1)

P (XA,1)
̸= P (t

s(Ci)

P,F
−1(0)∩XD,1)

P (XD,1)
or

P (t
s(Ci)

P,F
−1(1)∩XA,0)

P (XA,0)
̸= P (t

s(Ci)

P,F
−1(1)∩XD,0)

P (XD,0)
. This

implies Lfair
F,P (t

s(Ci)
P,F ) > 0. In this case, the Bayes classifier that cuts at st(Ci) is unfair. Thus there exist a

threshold classifier that is unfair.

• Case 2:
P (t

s(Ci)

P,F
−1(0)∩XA,1)

P (XA,1)
=

P (t
s(Ci)

P,F
−1(0)∩XD,1)

P (XD,1)
and

P (t
s(Ci)

P,F
−1(1)∩XA,0)

P (XA,0)
=

P (t
s(Ci)

P,F
−1(1)∩XD,0)

P (XD,0)
.

However since Px∼P [x ∈ Ci| ∈ A, t(x) = 0] ̸= Px∼P [x ∈ Ci|x ∈ D, t(x) = 0] or Px∼P [x ∈ Ci| ∈
A, t(x) = 1] ̸= Px∼P [x ∈ Ci|x ∈ D, t(x) = 1], this implies that i > 1. Now consider the threshold classifier
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with threshold st(Ci−1):

Px∼P [t
s(Ci−1)(x) = 0| ∈ A, t(x) = 1]

=Px∼P [t
s(Ci)(x) = 0| ∈ A, t(x) = 1]

+ Px∼P [x ∈ C| ∈ A, t(x) = 1]

̸=Px∼P [t
s(Ci)(x) = 0| ∈ D, t(x) = 1]

+ Px∼P [x ∈ C| ∈ D, t(x) = 1]

= Px∼P [t
s(Ci−1)(x) = 0| ∈ D, t(x) = 1]

or
Px∼P [t

s(Ci−1)(x) = 1| ∈ A, t(x) = 0]

=Px∼P [t
s(Ci)(x) = 1| ∈ A, t(x) = 0]

− Px∼P [x ∈ C| ∈ A, t(x) = 0]

̸=Px∼P [t
s(Ci)(x) = 0| ∈ D, t(x) = 0]

− Px∼P [x ∈ C| ∈ D, t(x) = 1]

=Px∼P [t
s(Ci−1)(x) = 1| ∈ D, t(x) = 0]

Which implies LEO
P (ts(Ci−1)) > 0. Thus there exist a threshold classifier that is unfair.

We can bound adversarial fairness and accuracy enforced fairness of a feature set F w.r.t. P and LEO by the dCF -
difference and dCF st

-difference of conditional distributions respectively:

Uadv(F) ≤ 1

2
dHF (PA,1, PD,1) +

1

2
dHF (PA,0, PD,0)

Uacc(F) ≤ 1

2
dHthres

CF ,st
(PA,1, PD,1) +

1

2
dHthres

CF ,st
(PA,0, PD,0)

Furthermore, we can lower bound the adversarial fairness of a representation by
1

2
dHF

(PA,l, PD,l) ≤ Uadv(F)

for every l ∈ {0, 1} Proof of Theorem 10:
Uadv(F) = max

h∈HCF

LEO
P (h)

= max
h∈HF

∑
l∈{0,1}

1

2
|P (h−1(1− l) ∩XA,l)

P (XA,l)
− P (h−1(1− l) ∩XD,l)

P (XD,l)
|

≤ 1

2
sup

1B∈HF

|PA,1(B)− PD,1(B)|+ 1

2
sup

1B∈HF

|PA,0(B)− PD,1(B)|

=
1

2
dHF

(PA,1, PD,1) +
1

2
dHF

(PA,0, PD,0)

Uacc(F) ≤ max
h∈HF

LEO
P (h)

= max
h∈HF

∑
l∈{0,1}

1

2
|P (h−1(1− l) ∩XA,l

P (XA,l)
− P (h−1(1− l) ∩XD,l)

P (XD,l)
|

≤ 1

2
sup

1B∈Hthres
CF ,st

|PA,1(B)− PD,1(B)|

+
1

2
sup

1B∈Hthres
CF ,st

|PA,0(B)− PD,1(B)|

=
1

2
dHthres

CF ,st
(PA,1, PD,1) +

1

2
dHthres

CF ,st
(PA,0, PD,0)
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Furthermore, for any label l′ ∈ {0, 1}, we get

Uadv(F) = max
h∈HF

LEO
P (h)

= max
h∈HF

∑
l∈{0,1}

1

2
|P (h−1(1− l) ∩XA,l

P (XA,l)
− P (h−1(1− l) ∩XD,l)

P (XD,l)
|

≥1

2
max
h∈HF

|P (h−1(1− l′) ∩XA,l

P (XA,l′)
− P (h−1(1− l′) ∩XD,l)

P (XD,l′)
|

=
1

2
sup

1B∈HF

|PA,l′(B)− PD,l′(B)|

=
1

2
dHF

(PA,l, PD,l)

A feature set F has calibration parity w.r.t. P if it has adversarial fairness w.r.t P and the group-fairness measure LPred.
The other direction does not hold. In particular, adversarial fairness w.r.t. P and LPred is only possible, if P has equal
success rates for both groups

Proof of Theorem 11: Assume F does not have calibration parity. Thus t(x) and G(x) are dependent given a feature
vector. Thus there exists label l ∈ {0, 1}, group G ∈ {A,D} and a cell C ∈ CF with P (C∩XG,l)

P (C∩G) ̸= P (C∩t−1(l))
P (C) . Now

consider the hypothesis class h defined by h−1(1) = C. For this hypothesis we have P (h−1(1)∩XG,l)
P (h−1(l)∩G) ̸= P (h−1(1)∩t−1(l))

P (h−1(l)) .
Thus, not every hypothesis h ∈ HF fulfills predictive rate parity.

The reverse statement is not true. Let CF = {C1, C2} be such that P (C1∩XA,1) = 0.5, P (C1∩XA,0) = 0.1, P (C1∩
XD,1) = 0.2, P (C1 ∩XA,1) = 0.04 and P (C2 ∩XA,1) = P (C2 ∩XA,0) = P (C1 ∩XD,1) = P (C1 ∩XA,1) = 0.04.

The classifier h defined by h(C) = 1 for every C ∈ CF does not have predictive rate parity, since P (h−1(1)∩XA,0)
P (h−1∩A) =

P (XA,0)
P (A) = 14

68 ̸= 22
100 = P (t−1(1)) =

P (h−1(1)∩XA,0)
P (h−1∩A) =

P (XA,0)
P (A) . Moreover, adversarial predictive parity is only

possible in cases where success rates are equal, since unequal success rates always implies that the classifier h defined
by h(C) = 1 for every C ∈ CF does not fulfill predictive rate parity.

A feature set F has demographic parity w.r.t. P if and only if it has adversarially fair w.r.t P and the group-fairness
objective LDP. Proof of Theorem 12:

• Demographic Parity: Assume F has demographic parity, then we have for every cell C ∈ CF : P (A∩C)
P (C) =

P (A). Thus, we have for any h ∈ HF :

P (h−1(1) ∩A)

P (h−1(1))
=

∑
C∈CF :C∈h−1(1) P (C ∩A)

P (h−1(1))

=

∑
C∈CF :C∈h−1(1) P (C)P (A)

P (h−1(1))
=

P (A)
∑

C∈CF :C∈h−1(1) P (C)

P (h−1(1))
=

P (A)P (h−1(1))

P (h−1(1))
= P (A)

Thus any h ∈ HF also has demographic parity.

• Assume F does not have demographic parity. Thus, there exists at least one cell C ∈ CF with P (A∩C)
P (C) ̸= P (C).

Now consider the hypothesis class h defined by h−1(1) = C. For this hypothesis we have P (h−1(1)∩A)
P (h−1(1)) ̸=

P (A). Thus, not every hypothesis h ∈ HF has demographic parity.

• There exists a distribution P and a feature set F such that each f ∈ F the feature set {f} has zero-group-
knowledge w.r.t. P , but F is not and Uadv(F) = 1

• There exists a distribution P and a feature set F such that each f ∈ F , the feature set {f} has demographic
parity w.r.t. P , but F has not. Furthermore the group-membership can be perfectly determined by F , i.e. for
every cell C ∈ CF we have

Px∼P [x ∈ A|x ∈ C] ∈ {0, 1}
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• There exists a distribution P and a feature set F such that each f ∈ F , the feature set {f} has calibration
parity w.r.t. P , but F has not. Furthermore the scores for the different groups in each cell are perfectly opposed,
i.e. C ⊆ A or C ⊆ D.

Proof of Observation 1:

• (zero-group-knowledge) Consider the domain X = x1, x2, x3, x4, x5, x6, x7, x8 with XA,1 = x1, x2

,XD,1 = x3, x4, XA,0 = x5, x6 and XD,0 = x7, x8,. Furthermore let F = {f1, f2} with f−1
1 (1) =

{x1, x3, x5, x7} and f−1
2 (1) = {x1, x4, x5, x8}. Furthermore let P be uniform over X ,i.e. P ({x1}) =

P ({x2}) = P ({x3}) = P ({x4}) = P ({x5}) = P ({x6}) = P ({x7}) = P ({x8}) = 0.125. Thus, we have
zero-group-knowledge for both features, i.e.

P (XA,1 ∩ f−1
1 (1))

P (t−1(1) ∩ f−1
1 (1))

=
P ({x1})

P ({x1, x2})
= 0.5

=
P ({x3})

P ({x3, x4})
=

P (XD,1 ∩ f−1
1 (1))

P (t−1(1) ∩ f−1
1 (1))

.

P (XA,0 ∩ f−1
1 (1))

P (t−1(0) ∩ f−1
1 (1))

=
P ({x5})

P ({x5, x6})
= 0.5

=
P ({x7})

P ({x7, x8})
=

P (XD,0 ∩ f−1
1 (1))

P (t−1(0) ∩ f−1
1 (1))

.

P (XA,1 ∩ f−1
2 (1))

P (t−1(1) ∩ f−1
2 (1))

P ({x1})
P ({x1, x2})

= 0.5

=
P ({x4})

P ({x3, x4})
=

P (XD,1 ∩ f−1
2 (1))

P (t−1(1) ∩ f−1
2 (1))

.

P (XA,0 ∩ f−1
2 (1))

P (t−1(0) ∩ f−1
2 (1))

P ({x5})
P ({x5, x6})

= 0.5

=
P ({x8})

P ({x7, x8})
=

P (XD,0 ∩ f−1
2 (1))

P (t−1(0) ∩ f−1
2 (1))

.

However, the featureset F does not have zero-group-knowledge (using Theorem 7) : CF = {C1, C2, C3, C4}
with C1 = {x1, x5}, C2 = {x2, x6}, C3 = {x3, x7}, and C4 = {x4, x8}. Consider the classifier h ∈ HF

with h−1(1) = {C1, C3}. Then LEO
P (h) =

∑
l∈{0,1}

∣∣∣P (h−1(|1−l|)∩XA,l)
P (XA,l)

− P (h−1(|1−l|)∩XD,l)
P (XD,l)

∣∣∣ = | 12 − 0|+
|0− 1

2 | = 1. Thus UEO
adv (F) = 1.

• (demographic parity) Consider the domain X = x1, x2, x3, x4 with A = x1, x2 and D = x3, x4. Further-
more let F = {f1, f2} with f−1

1 (1) = {x1, x3} and f−1
2 (1) = {x1, x4}. Thus, CF = X . Furthermore let P

be uniform over X ,i.e. P ({x1}) = P ({x2}) = P ({x3}) = P ({x4}) = 0.25. We have demographic parity
for both features. However, since CF = X , the featureset does not have demographic parity. Furthermore, the
information from the cells suffice to perfectly predict the group-membership.

• (calibration parity) Consider the same domain X , the same feature set and the same probability distribution
P as in the case of zero-group-knowledge. Furthermore consider the featureset F = {f1, f2} with f−1

1 (1) =
{x1, x3, x5, x7} and f−1

2 (1) = {x1, x4, x6, x7}. Both features of F have calibration parity, since both sides
of each split have success-rate 0.5 for each group. Furthermore the F itself does not have calibration parity:
We have CF = {C1, C2, C3, C4} with C1 = {x1, x7}, C2 = {x2, x8}, C3 = {x3, x5}, and C4 = {x4, x6}.
Both cells C1 and C2 have one element from XA,1 and one from XD,0. Thus the success rate of elements of
group A is 1 in these cells and the success rate of elements of group D is 0. Accordingly, both cells C3 and C4

have one element from XD,1 and one from XA,0. Thus the success rate of elements of group A is 0 in these
cells and the success rate of elements of group D is 1 Thus when splitting these cells by group-membership
both cells the resulting scores don’t remain the same.
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